An explicit FE-model of impact fracture in an adhesive joint

An explicit FE-model of impact fracture in an adhesive joint Dynamic fracture of an adhesive layer in a structure is analysed. The structure represents some specific properties of an automotive structure and is simple enough to allow for closed form solutions obtained by the method of characteristics. These solutions are compared to results of explicit FE-analyses. The FE-solutions agree with the closed form solutions. Damage is included in the FE-model. Three constitutive models of the adhesive layer are used. It is shown that an amplification of the strain rate is achieved in the adhesive layer. It is also shown that an artificially increased flexibility of the adhesive in an aluminium structure gives only minor influences of the general behaviour. In some load cases, the adhesive layer will experience repeated loading/unloading. It is shown that in these cases an explicit FE-analysis with a “large” time step is more prone to give immediate rupture. Thus, the method is conservative. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Engineering Fracture Mechanics Elsevier

An explicit FE-model of impact fracture in an adhesive joint

Engineering Fracture Mechanics, Volume 74 (14) – Sep 1, 2007

Loading next page...
 
/lp/elsevier/an-explicit-fe-model-of-impact-fracture-in-an-adhesive-joint-K40bHx9418
Publisher
Elsevier
Copyright
Copyright © 2006 Elsevier Ltd
ISSN
0013-7944
eISSN
1873-7315
D.O.I.
10.1016/j.engfracmech.2006.10.016
Publisher site
See Article on Publisher Site

Abstract

Dynamic fracture of an adhesive layer in a structure is analysed. The structure represents some specific properties of an automotive structure and is simple enough to allow for closed form solutions obtained by the method of characteristics. These solutions are compared to results of explicit FE-analyses. The FE-solutions agree with the closed form solutions. Damage is included in the FE-model. Three constitutive models of the adhesive layer are used. It is shown that an amplification of the strain rate is achieved in the adhesive layer. It is also shown that an artificially increased flexibility of the adhesive in an aluminium structure gives only minor influences of the general behaviour. In some load cases, the adhesive layer will experience repeated loading/unloading. It is shown that in these cases an explicit FE-analysis with a “large” time step is more prone to give immediate rupture. Thus, the method is conservative.

Journal

Engineering Fracture MechanicsElsevier

Published: Sep 1, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off