An efficient way to use medium-or-low temperature solar heat for power generation integration into conventional power plant

An efficient way to use medium-or-low temperature solar heat for power generation integration... This paper demonstrates that the medium-or-low temperature solar heat can be used to generate power efficiently by integrating into conventional coal-fired power plants. In so-called solar aided power generation (SAPG) technology, medium-or-low temperature solar heat is used to replace parts of bled-off steams in regenerative Rankine cycle to pre-heat feedwater. Thermal oil can be used as solar heat carrier and no solar steam needs to be generated, therefore the pressure of solar system can be much lower than that of the solar collector using water/steam as the heat carrier. A 200MW coal-fired thermal power plant is selected as the case study to demonstrate the advantages of the SAPG technology in terms of solar to power efficiency, specific fuel and steam consumption rates, under various integration scenarios. The results indicate that there is a great potential and effect for low or medium solar heat to be used for power generation purposes through SAPG approach. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Thermal Engineering Elsevier

An efficient way to use medium-or-low temperature solar heat for power generation integration into conventional power plant

Loading next page...
 
/lp/elsevier/an-efficient-way-to-use-medium-or-low-temperature-solar-heat-for-power-aJARfK5axB
Publisher
Elsevier
Copyright
Copyright © 2010 Elsevier Ltd
ISSN
1359-4311
eISSN
1873-5606
D.O.I.
10.1016/j.applthermaleng.2010.08.024
Publisher site
See Article on Publisher Site

Abstract

This paper demonstrates that the medium-or-low temperature solar heat can be used to generate power efficiently by integrating into conventional coal-fired power plants. In so-called solar aided power generation (SAPG) technology, medium-or-low temperature solar heat is used to replace parts of bled-off steams in regenerative Rankine cycle to pre-heat feedwater. Thermal oil can be used as solar heat carrier and no solar steam needs to be generated, therefore the pressure of solar system can be much lower than that of the solar collector using water/steam as the heat carrier. A 200MW coal-fired thermal power plant is selected as the case study to demonstrate the advantages of the SAPG technology in terms of solar to power efficiency, specific fuel and steam consumption rates, under various integration scenarios. The results indicate that there is a great potential and effect for low or medium solar heat to be used for power generation purposes through SAPG approach.

Journal

Applied Thermal EngineeringElsevier

Published: Feb 1, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off