An approach for stress analysis of corrugated-core integrated thermal protection system under thermal and mechanical environment

An approach for stress analysis of corrugated-core integrated thermal protection system under... The stress distributions in trapezoidal corrugated-core integrated thermal protection system (ITPS) under thermal and mechanical loads are predicted by employing the equivalent sandwich model introduced in our previous study (Gu et al., 2017). The method for prediction of stress based on high-order layerwise theory and the principle of structural mechanics is presented, which considers the effects of temperature-dependent material properties and curvature in sheets. For the top face sheet of ITPS, the local displacement induced by out-of-plane pressure is taken into account in the prediction of stress. And for the bottom face sheet of ITPS, the local displacement induced by corrugated webs is also considered by treating the sheet as beams with proper displacement compatibility. The accuracy of the proposed method is verified by comparison with the results by three-dimensional (3D) finite element analysis. It has been shown that the proposed method requires significantly less computational effort and agrees well with the finite element results. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Composite Structures Elsevier

An approach for stress analysis of corrugated-core integrated thermal protection system under thermal and mechanical environment

Loading next page...
 
/lp/elsevier/an-approach-for-stress-analysis-of-corrugated-core-integrated-thermal-uYk3pyhW85
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0263-8223
eISSN
1879-1085
D.O.I.
10.1016/j.compstruct.2017.10.078
Publisher site
See Article on Publisher Site

Abstract

The stress distributions in trapezoidal corrugated-core integrated thermal protection system (ITPS) under thermal and mechanical loads are predicted by employing the equivalent sandwich model introduced in our previous study (Gu et al., 2017). The method for prediction of stress based on high-order layerwise theory and the principle of structural mechanics is presented, which considers the effects of temperature-dependent material properties and curvature in sheets. For the top face sheet of ITPS, the local displacement induced by out-of-plane pressure is taken into account in the prediction of stress. And for the bottom face sheet of ITPS, the local displacement induced by corrugated webs is also considered by treating the sheet as beams with proper displacement compatibility. The accuracy of the proposed method is verified by comparison with the results by three-dimensional (3D) finite element analysis. It has been shown that the proposed method requires significantly less computational effort and agrees well with the finite element results.

Journal

Composite StructuresElsevier

Published: Feb 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off