An anisotropic hyperelastic constitutive model of brain white matter in biaxial tension and structural–mechanical relationships

An anisotropic hyperelastic constitutive model of brain white matter in biaxial tension and... Computational models of the brain require accurate and robust constitutive models to characterize the mechanical behavior of brain tissue. The anisotropy of white matter has been previously demonstrated; however, there is a lack of data describing the effects of multi-axial loading, even though brain tissue experiences multi-axial stress states. Therefore, a biaxial tensile experiment was designed to more fully characterize the anisotropic behavior of white matter in a quasi-static loading state, and the mechanical data were modeled with an anisotropic hyperelastic continuum model. A probabilistic analysis was used to quantify the uncertainty in model predictions because the mechanical data of brain tissue can show a high degree of variability, and computational studies can benefit from reporting the probability distribution of model responses. The axonal structure in white matter can be heterogeneous and regionally dependent, which can affect computational model predictions. Therefore, corona radiata and corpus callosum regions were tested, and histology and transmission electron microscopy were performed on tested specimens to relate the distribution of axon orientations and the axon volume fraction to the mechanical behavior. These measured properties were implemented into a structural constitutive model. Results demonstrated a significant, but relatively low anisotropic behavior, yet there were no conclusive mechanical differences between the two regions tested. The inclusion of both biaxial and uniaxial tests in model fits improved the accuracy of model predictions. The mechanical anisotropy of individual specimens positively correlated with the measured axon volume fraction, and, accordingly, the structural model exhibited slightly decreased uncertainty in model predictions compared to the model without structural properties. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the Mechanical Behavior of Biomedical Materials Elsevier

An anisotropic hyperelastic constitutive model of brain white matter in biaxial tension and structural–mechanical relationships

Loading next page...
 
/lp/elsevier/an-anisotropic-hyperelastic-constitutive-model-of-brain-white-matter-6b6JAcHNN7
Publisher
Elsevier
Copyright
Copyright © 2016 Elsevier Ltd
ISSN
1751-6161
eISSN
1878-0180
D.O.I.
10.1016/j.jmbbm.2016.05.003
Publisher site
See Article on Publisher Site

Abstract

Computational models of the brain require accurate and robust constitutive models to characterize the mechanical behavior of brain tissue. The anisotropy of white matter has been previously demonstrated; however, there is a lack of data describing the effects of multi-axial loading, even though brain tissue experiences multi-axial stress states. Therefore, a biaxial tensile experiment was designed to more fully characterize the anisotropic behavior of white matter in a quasi-static loading state, and the mechanical data were modeled with an anisotropic hyperelastic continuum model. A probabilistic analysis was used to quantify the uncertainty in model predictions because the mechanical data of brain tissue can show a high degree of variability, and computational studies can benefit from reporting the probability distribution of model responses. The axonal structure in white matter can be heterogeneous and regionally dependent, which can affect computational model predictions. Therefore, corona radiata and corpus callosum regions were tested, and histology and transmission electron microscopy were performed on tested specimens to relate the distribution of axon orientations and the axon volume fraction to the mechanical behavior. These measured properties were implemented into a structural constitutive model. Results demonstrated a significant, but relatively low anisotropic behavior, yet there were no conclusive mechanical differences between the two regions tested. The inclusion of both biaxial and uniaxial tests in model fits improved the accuracy of model predictions. The mechanical anisotropy of individual specimens positively correlated with the measured axon volume fraction, and, accordingly, the structural model exhibited slightly decreased uncertainty in model predictions compared to the model without structural properties.

Journal

Journal of the Mechanical Behavior of Biomedical MaterialsElsevier

Published: Sep 1, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off