Ambipolar charge transport of diketopyrrolepyrrole-silole-based copolymers and effect of side chain engineering: Compact model parameter extraction strategy for high-voltage logic applications

Ambipolar charge transport of diketopyrrolepyrrole-silole-based copolymers and effect of side... The copolymers P24DPP-silole and P29DPP-silole, each composed of diketopyrrolopyrrole (DPP) and silole derivatives, were synthesized using a Stille coupling reaction, and their electrical performances in organic field-effect transistors (OFETs) and circuits were investigated. While both the as-spun OFETs exhibited quite low field-effect hole mobility values, the OFETs subjected to thermal annealing at 150 °C exhibited typical ambipolar transport characteristics with average hole and electron mobility values of 1 × 10−1 cm2/(V s) and 2 × 10−3 cm2/(V s). Because the compact model was necessary to perform circuit design with the synthesized OFETs, a strategy for extracting compact model parameters was proposed for high-voltage logic circuit applications by using the industry standard compact Berkeley short-channel IGFET model (BSIM). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Organic Electronics Elsevier

Ambipolar charge transport of diketopyrrolepyrrole-silole-based copolymers and effect of side chain engineering: Compact model parameter extraction strategy for high-voltage logic applications

Loading next page...
 
/lp/elsevier/ambipolar-charge-transport-of-diketopyrrolepyrrole-silole-based-xaNv1Sv0jB
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
1566-1199
D.O.I.
10.1016/j.orgel.2017.12.015
Publisher site
See Article on Publisher Site

Abstract

The copolymers P24DPP-silole and P29DPP-silole, each composed of diketopyrrolopyrrole (DPP) and silole derivatives, were synthesized using a Stille coupling reaction, and their electrical performances in organic field-effect transistors (OFETs) and circuits were investigated. While both the as-spun OFETs exhibited quite low field-effect hole mobility values, the OFETs subjected to thermal annealing at 150 °C exhibited typical ambipolar transport characteristics with average hole and electron mobility values of 1 × 10−1 cm2/(V s) and 2 × 10−3 cm2/(V s). Because the compact model was necessary to perform circuit design with the synthesized OFETs, a strategy for extracting compact model parameters was proposed for high-voltage logic circuit applications by using the industry standard compact Berkeley short-channel IGFET model (BSIM).

Journal

Organic ElectronicsElsevier

Published: Mar 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off