All-solution-processed multilayer polymer/dendrimer light emitting diodes

All-solution-processed multilayer polymer/dendrimer light emitting diodes A fully solution-processed deep-blue emitting organic light emitting diode (OLED) based on a highly efficient fluorescent dendritic material with a pyrene core, a phenylene shell and triphenylamine surface groups coupled with polymeric hole (HTL) and electron (ETL) transport layers is demonstrated. Each layer formed smooth and pinhole-free films as demonstrated by Atomic Force Microscopy (AFM) as well as by X-ray Photoelectron Spectroscopy (XPS). Furthermore, detailed Ultraviolet Photoelectron Spectroscopy (UPS) surveys revealed a beneficial energy level alignment and hence improved charge carrier confinement. The resulting triple-layer device saw a 7.7-fold increase in current efficiency compared to a single-layer device while maintaining a deep-blue emission color characterized by the CIE1931 coordinates of x = 0.153 and y = 0.155. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Organic Electronics Elsevier

Loading next page...
 
/lp/elsevier/all-solution-processed-multilayer-polymer-dendrimer-light-emitting-5n6AG7WH2S
Publisher
Elsevier
Copyright
Copyright © 2016 Elsevier Ltd
ISSN
1566-1199
D.O.I.
10.1016/j.orgel.2016.04.044
Publisher site
See Article on Publisher Site

Abstract

A fully solution-processed deep-blue emitting organic light emitting diode (OLED) based on a highly efficient fluorescent dendritic material with a pyrene core, a phenylene shell and triphenylamine surface groups coupled with polymeric hole (HTL) and electron (ETL) transport layers is demonstrated. Each layer formed smooth and pinhole-free films as demonstrated by Atomic Force Microscopy (AFM) as well as by X-ray Photoelectron Spectroscopy (XPS). Furthermore, detailed Ultraviolet Photoelectron Spectroscopy (UPS) surveys revealed a beneficial energy level alignment and hence improved charge carrier confinement. The resulting triple-layer device saw a 7.7-fold increase in current efficiency compared to a single-layer device while maintaining a deep-blue emission color characterized by the CIE1931 coordinates of x = 0.153 and y = 0.155.

Journal

Organic ElectronicsElsevier

Published: Aug 1, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial