“All-in-one” in vitro selection of collagen-binding vascular endothelial growth factor

“All-in-one” in vitro selection of collagen-binding vascular endothelial growth factor To enhance the therapeutic effect of growth factors, a powerful strategy is to direct their localization to damaged sites. To treat skin wounds and myocardial infarction, we selected vascular endothelial growth factor (VEGF) carrying binding affinity to collagen. A simple conjugation of a reported collagen-binding sequence and VEGF did not increase the collagen-binding affinity, indicating that the molecular interaction between the two proteins abolished collagen binding activity. Here, we present a new molecular evolution strategy, “all-in-one” in vitro selection, in which a collagen-binding VEGF (CB-VEGF) was directly identified from a random library consisting of random and VEGF sequences. As expected, the selected CB-VEGFs exhibited high binding affinity to collagen and maintained the same growth enhancement activity for endothelial cells as unmodified VEGF in solution. Furthermore, the selected CB-VEGF enhanced angiogenesis at skin wounds and infarcted myocardium. This study demonstrates that “all-in-one” in vitro selection is a novel strategy for the design of functional proteins for regenerative medicine. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biomaterials Elsevier

“All-in-one” in vitro selection of collagen-binding vascular endothelial growth factor

Loading next page...
 
/lp/elsevier/all-in-one-in-vitro-selection-of-collagen-binding-vascular-endothelial-3fq0xcu10L
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0142-9612
D.O.I.
10.1016/j.biomaterials.2018.01.055
Publisher site
See Article on Publisher Site

Abstract

To enhance the therapeutic effect of growth factors, a powerful strategy is to direct their localization to damaged sites. To treat skin wounds and myocardial infarction, we selected vascular endothelial growth factor (VEGF) carrying binding affinity to collagen. A simple conjugation of a reported collagen-binding sequence and VEGF did not increase the collagen-binding affinity, indicating that the molecular interaction between the two proteins abolished collagen binding activity. Here, we present a new molecular evolution strategy, “all-in-one” in vitro selection, in which a collagen-binding VEGF (CB-VEGF) was directly identified from a random library consisting of random and VEGF sequences. As expected, the selected CB-VEGFs exhibited high binding affinity to collagen and maintained the same growth enhancement activity for endothelial cells as unmodified VEGF in solution. Furthermore, the selected CB-VEGF enhanced angiogenesis at skin wounds and infarcted myocardium. This study demonstrates that “all-in-one” in vitro selection is a novel strategy for the design of functional proteins for regenerative medicine.

Journal

BiomaterialsElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off