Alginate affects agglomeration state and uptake of 14C-labeled few-layer graphene by freshwater snails: Implications for the environmental fate of graphene in aquatic systems

Alginate affects agglomeration state and uptake of 14C-labeled few-layer graphene by freshwater... Understanding of the interaction of graphene with natural polysaccharides (e.g., alginate) is crucial to elucidate its environmental fate. We investigated the impact of alginate on the agglomeration and stability of 14C-labeled few-layer graphene (FLG) in varying concentrations of monovalent (NaCl) and divalent (CaCl2) electrolytes. Enhanced agglomeration occurred at high CaCl2 concentrations (≥5 mM) due to the alginate gel networks formation in the presence of Ca2+. FLG enmeshed within extended alginate gel networks was observed under transmission electron microscope and atomic force microscope. However, background Na+ competition for binding sites with Ca2+ at the alginate surfaces shielded the gelation of alginate. FLG was readily dispersed by alginate under environmentally relevant ionic strength conditions (i.e., <200 mM Na+ and <5 mM Ca2+). In comparison with the bare FLG, the slow sedimentation of the alginate-stabilized FLG (158 μg/L) caused continuous exposure of this nanomaterial to freshwater snails, which ingested 1.9 times more FLG through filter-feeding within 72 h. Moreover, surface modification of FLG by alginate significantly increased the whole-body and intestinal levels of FLG, but reduced the internalization of FLG to the intestinal epithelial cells. These findings indicate that alginate will act as a stabilizing agent controlling the transport of FLG in aqueous systems. This study also provides the first evidence that interaction of graphene with natural polysaccharides affected the uptake of FLG in the snails, which may alter the fate of FLG in aquatic environments. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Pollution Elsevier

Alginate affects agglomeration state and uptake of 14C-labeled few-layer graphene by freshwater snails: Implications for the environmental fate of graphene in aquatic systems

Loading next page...
 
/lp/elsevier/alginate-affects-agglomeration-state-and-uptake-of-14c-labeled-few-0YClRJYVWx
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0269-7491
D.O.I.
10.1016/j.envpol.2017.11.087
Publisher site
See Article on Publisher Site

Abstract

Understanding of the interaction of graphene with natural polysaccharides (e.g., alginate) is crucial to elucidate its environmental fate. We investigated the impact of alginate on the agglomeration and stability of 14C-labeled few-layer graphene (FLG) in varying concentrations of monovalent (NaCl) and divalent (CaCl2) electrolytes. Enhanced agglomeration occurred at high CaCl2 concentrations (≥5 mM) due to the alginate gel networks formation in the presence of Ca2+. FLG enmeshed within extended alginate gel networks was observed under transmission electron microscope and atomic force microscope. However, background Na+ competition for binding sites with Ca2+ at the alginate surfaces shielded the gelation of alginate. FLG was readily dispersed by alginate under environmentally relevant ionic strength conditions (i.e., <200 mM Na+ and <5 mM Ca2+). In comparison with the bare FLG, the slow sedimentation of the alginate-stabilized FLG (158 μg/L) caused continuous exposure of this nanomaterial to freshwater snails, which ingested 1.9 times more FLG through filter-feeding within 72 h. Moreover, surface modification of FLG by alginate significantly increased the whole-body and intestinal levels of FLG, but reduced the internalization of FLG to the intestinal epithelial cells. These findings indicate that alginate will act as a stabilizing agent controlling the transport of FLG in aqueous systems. This study also provides the first evidence that interaction of graphene with natural polysaccharides affected the uptake of FLG in the snails, which may alter the fate of FLG in aquatic environments.

Journal

Environmental PollutionElsevier

Published: Mar 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off