Aging shapes the distribution of copper in soil aggregate size fractions

Aging shapes the distribution of copper in soil aggregate size fractions Soil aggregates are often considered the basic structural elements of soils. Aggregates of different size vary in their ability to retain or transfer heavy metals in the environment. Here, after incubation of a sieved (<2 mm) topsoil with copper, bulk soil was separated into four aggregate-size fractions and their adsorption characteristics for Cu were determined. By combining nano-scale secondary ion mass spectrometry and C-1s Near Edge X-ray Absorption Fine Structure Spectroscopy, we found that copper tends to bind onto organic matter in the <2 μm and 20–63 μm aggregates. Surprisingly, Cu correlated with carboxyl-C in the <2 μm aggregates but with alkyl-C in the 20–63 μm aggregates. This is the first attempt to visualize the spatial distribution of copper in aggregate size fractions. These direct observations can help improve the understanding of interactions between heavy metals and various soil components. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Transportation Research Part C: Emerging Technologies Elsevier

Aging shapes the distribution of copper in soil aggregate size fractions

Loading next page...
 
/lp/elsevier/aging-shapes-the-distribution-of-copper-in-soil-aggregate-size-TAN9DtvVYr
Publisher
Pergamon
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0968-090X
D.O.I.
10.1016/j.envpol.2017.10.091
Publisher site
See Article on Publisher Site

Abstract

Soil aggregates are often considered the basic structural elements of soils. Aggregates of different size vary in their ability to retain or transfer heavy metals in the environment. Here, after incubation of a sieved (<2 mm) topsoil with copper, bulk soil was separated into four aggregate-size fractions and their adsorption characteristics for Cu were determined. By combining nano-scale secondary ion mass spectrometry and C-1s Near Edge X-ray Absorption Fine Structure Spectroscopy, we found that copper tends to bind onto organic matter in the <2 μm and 20–63 μm aggregates. Surprisingly, Cu correlated with carboxyl-C in the <2 μm aggregates but with alkyl-C in the 20–63 μm aggregates. This is the first attempt to visualize the spatial distribution of copper in aggregate size fractions. These direct observations can help improve the understanding of interactions between heavy metals and various soil components.

Journal

Transportation Research Part C: Emerging TechnologiesElsevier

Published: Jan 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off