Aging of aluminum/iron-based drinking water treatment residuals in lake water and their association with phosphorus immobilization capability

Aging of aluminum/iron-based drinking water treatment residuals in lake water and their... Aluminum and Fe-based drinking water treatment residuals (DWTRs) have shown a high potential for use by geoengineers in internal P loading control in lakes. In this study, aging of Al/Fe-based DWTRs in lake water under different pH and redox conditions associated with their P immobilization capability was investigated based on a 180-day incubation test. The results showed that the DWTRs before and after incubation under different conditions have similar structures, but their specific surface area and pore volume, especially mesopores with radius at 2.1–5.0 nm drastically decreased. The oxalate extractable Al contents changed little although a small amount of Al transformed from oxidizable to residual forms. The oxalate extractable Fe contents also decreased by a small amount, but the transformation from oxidizable to residual forms were remarkable, approximately by 14.6%. However, the DWTRs before and after incubation had similar P immobilization capabilities in solutions and lake sediments. Even the maximum P adsorption capacity estimated by the Langmuir model increased after incubation. Therefore, it was not necessary to give special attention to the impact of Al and Fe aging on the effectiveness of DWTRs for geoengineering in lakes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Environmental Management Elsevier

Aging of aluminum/iron-based drinking water treatment residuals in lake water and their association with phosphorus immobilization capability

Loading next page...
 
/lp/elsevier/aging-of-aluminum-iron-based-drinking-water-treatment-residuals-in-kqfgdzpjpU
Publisher
Elsevier
Copyright
Copyright © 2015 Elsevier Ltd
ISSN
0301-4797
D.O.I.
10.1016/j.jenvman.2015.04.047
Publisher site
See Article on Publisher Site

Abstract

Aluminum and Fe-based drinking water treatment residuals (DWTRs) have shown a high potential for use by geoengineers in internal P loading control in lakes. In this study, aging of Al/Fe-based DWTRs in lake water under different pH and redox conditions associated with their P immobilization capability was investigated based on a 180-day incubation test. The results showed that the DWTRs before and after incubation under different conditions have similar structures, but their specific surface area and pore volume, especially mesopores with radius at 2.1–5.0 nm drastically decreased. The oxalate extractable Al contents changed little although a small amount of Al transformed from oxidizable to residual forms. The oxalate extractable Fe contents also decreased by a small amount, but the transformation from oxidizable to residual forms were remarkable, approximately by 14.6%. However, the DWTRs before and after incubation had similar P immobilization capabilities in solutions and lake sediments. Even the maximum P adsorption capacity estimated by the Langmuir model increased after incubation. Therefore, it was not necessary to give special attention to the impact of Al and Fe aging on the effectiveness of DWTRs for geoengineering in lakes.

Journal

Journal of Environmental ManagementElsevier

Published: Aug 15, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off