Advances in structural studies of recombination mediator proteins

Advances in structural studies of recombination mediator proteins Recombination mediator proteins (RMPs) are critical for genome integrity in all organisms. They include phage UvsY, prokaryotic RecF, -O, -R (RecFOR) and eukaryotic Rad52, Breast Cancer susceptibility 2 (BRCA2) and Partner and localizer of BRCA2 (PALB2) proteins. BRCA2 and PALB2 are tumor suppressors implicated in cancer. RMPs regulate binding of RecA-like recombinases to sites of DNA damage to initiate the most efficient non-mutagenic repair of broken chromosome and other deleterious DNA lesions. Mechanistically, RMPs stimulate a single-stranded DNA (ssDNA) hand-off from ssDNA binding proteins (ssbs) such as gp32, SSB and RPA, to recombinases, activating DNA repair only at the time and site of the damage event. This review summarizes structural studies of RMPs and their implications for understanding mechanism and function. Comparative analysis of RMPs is complicated due to their convergent evolution. In contrast to the evolutionary conserved ssbs and recombinases, RMPs are extremely diverse in sequence and structure. Structural studies are particularly important in such cases to reveal common features of the entire family and specific features of regulatory mechanisms for each member. All RMPs are characterized by specific DNA-binding domains and include variable protein interaction motifs. The complexity of such RMPs corresponds to the ever-growing number of DNA metabolism events they participate in under normal and pathological conditions and requires additional comprehensive structure-functional studies. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biophysical Chemistry Elsevier

Advances in structural studies of recombination mediator proteins

Loading next page...
 
/lp/elsevier/advances-in-structural-studies-of-recombination-mediator-proteins-S1SnGkD5S8
Publisher
Elsevier
Copyright
Copyright © 2016 Elsevier B.V.
ISSN
0301-4622
D.O.I.
10.1016/j.bpc.2016.12.001
Publisher site
See Article on Publisher Site

Abstract

Recombination mediator proteins (RMPs) are critical for genome integrity in all organisms. They include phage UvsY, prokaryotic RecF, -O, -R (RecFOR) and eukaryotic Rad52, Breast Cancer susceptibility 2 (BRCA2) and Partner and localizer of BRCA2 (PALB2) proteins. BRCA2 and PALB2 are tumor suppressors implicated in cancer. RMPs regulate binding of RecA-like recombinases to sites of DNA damage to initiate the most efficient non-mutagenic repair of broken chromosome and other deleterious DNA lesions. Mechanistically, RMPs stimulate a single-stranded DNA (ssDNA) hand-off from ssDNA binding proteins (ssbs) such as gp32, SSB and RPA, to recombinases, activating DNA repair only at the time and site of the damage event. This review summarizes structural studies of RMPs and their implications for understanding mechanism and function. Comparative analysis of RMPs is complicated due to their convergent evolution. In contrast to the evolutionary conserved ssbs and recombinases, RMPs are extremely diverse in sequence and structure. Structural studies are particularly important in such cases to reveal common features of the entire family and specific features of regulatory mechanisms for each member. All RMPs are characterized by specific DNA-binding domains and include variable protein interaction motifs. The complexity of such RMPs corresponds to the ever-growing number of DNA metabolism events they participate in under normal and pathological conditions and requires additional comprehensive structure-functional studies.

Journal

Biophysical ChemistryElsevier

Published: Jun 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off