Advancements in hydrate phase equilibria and modeling of gas hydrates systems

Advancements in hydrate phase equilibria and modeling of gas hydrates systems Reliable hydrate phase behavior predictions are critical to petroleum and natural gas processing and design, and operation of process equipment. Inaccurate predictions of phase equilibria can also lead to erroneous design of process facilities and subsequently may cause safety hazards and flow assurance issues. This work reviews the experimental data on hydrate phase equilibria in the presence of inhibitors (Salts + Organic Inhibitors). The statistical thermodynamic model of van der Waals and Platteeuw for hydrate phase equilibria prediction is also critically reviewed. Recent studies have shown that the basic assumptions of the van der Waals and Platteeuw model, including the spherical symmetry of molecules, no guest–guest interactions, and no lattice distortions (due to guest molecules) can introduce errors in the predicted results. In addition, the limitations of the fluid phase models, which do not account for the effect of hydrogen bonding and electrolyte contributions, can lead to severe prediction errors in hydrate forming systems containing polar hydrate formers, inhibitors, and salts, especially at high concentrations. Thermodynamic predictions of gas hydrate phase equilibria for polar hydrate formers and inhibited systems (e.g., NaCl, KCl, CaCl2, and also methanol, ethanol, Ethane-1,2-diol) are of major concern because of the large errors in fluid phase equilibrium predictions. The unavailability of phase equilibria data, an appropriate electrolyte model, and an associative equation of state as well leads to various problems in predicting the properties of aqueous associating fluids and inhibited systems. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Fluid Phase Equilibria Elsevier

Advancements in hydrate phase equilibria and modeling of gas hydrates systems

Loading next page...
 
/lp/elsevier/advancements-in-hydrate-phase-equilibria-and-modeling-of-gas-hydrates-ye9sdoe1G3
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
0378-3812
eISSN
1879-0224
D.O.I.
10.1016/j.fluid.2018.01.014
Publisher site
See Article on Publisher Site

Abstract

Reliable hydrate phase behavior predictions are critical to petroleum and natural gas processing and design, and operation of process equipment. Inaccurate predictions of phase equilibria can also lead to erroneous design of process facilities and subsequently may cause safety hazards and flow assurance issues. This work reviews the experimental data on hydrate phase equilibria in the presence of inhibitors (Salts + Organic Inhibitors). The statistical thermodynamic model of van der Waals and Platteeuw for hydrate phase equilibria prediction is also critically reviewed. Recent studies have shown that the basic assumptions of the van der Waals and Platteeuw model, including the spherical symmetry of molecules, no guest–guest interactions, and no lattice distortions (due to guest molecules) can introduce errors in the predicted results. In addition, the limitations of the fluid phase models, which do not account for the effect of hydrogen bonding and electrolyte contributions, can lead to severe prediction errors in hydrate forming systems containing polar hydrate formers, inhibitors, and salts, especially at high concentrations. Thermodynamic predictions of gas hydrate phase equilibria for polar hydrate formers and inhibited systems (e.g., NaCl, KCl, CaCl2, and also methanol, ethanol, Ethane-1,2-diol) are of major concern because of the large errors in fluid phase equilibrium predictions. The unavailability of phase equilibria data, an appropriate electrolyte model, and an associative equation of state as well leads to various problems in predicting the properties of aqueous associating fluids and inhibited systems.

Journal

Fluid Phase EquilibriaElsevier

Published: May 15, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial