Adsorption of 1,2,3-Trichloropropane (TCP) to meet a MCL of 5 ppt

Adsorption of 1,2,3-Trichloropropane (TCP) to meet a MCL of 5 ppt 1,2,3-Trichloropropane (TCP) is a groundwater contaminant in the drinking water aquifers in Hawaii and some other states. Granular activated carbon (GAC) has been used for 30 years to treat approximately 60 million gallons per day of TCP-contaminated groundwater in Hawaii. The State of Hawaii's current maximum contaminant level (MCL) for TCP is 600 ng/L (ppt), and consideration is being given to lower the MCL to 5 ppt. There is no EPA MCL for TCP. A study was conducted to determine if any GAC could meet a 5 ppt MCL for TCP, and if so, how many bedvolumes (BVs) could be treated prior to breakthrough. Constant Diffusivity-Rapid Small-Scale Column Tests (CD-RSSCTs) were performed to evaluate GAC adsorption of TCP. Three different groundwaters and six different GACs were utilized. The RSSCTs with the currently-utilized GAC were predictive of the performance of the GAC contactors (50,000 BVs to breakthrough). Any of the six GACs could meet a MCL of 5 ppt and some could do so for 150,000 or more BVs. No single GAC was optimal for all three well sites, indicating effects of subtle undefined differences in the water matrix and/or GAC physiochemical properties. The coal-based direct-activated carbon currently being used is the least optimal for all three well sites with respect to meeting a potential new TCP MCL of 5 ppt. The most effective GACs for Kunia were the Calgon coal-based GAC and the Siemens enhanced coconut shell GAC, while the most effective for Waipahu were the Siemens regular and enhanced coconut shell GACs, and the most effective for Mililani was the Calgon coal-based GAC. Choosing just one GAC for use at all three well sites (rather than the optimal for each site) would result in a reduction of treatment run time of 1 year at one well site (63% reduction). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Pollution Elsevier

Adsorption of 1,2,3-Trichloropropane (TCP) to meet a MCL of 5 ppt

Loading next page...
 
/lp/elsevier/adsorption-of-1-2-3-trichloropropane-tcp-to-meet-a-mcl-of-5-ppt-zcU0e10RLB
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0269-7491
D.O.I.
10.1016/j.envpol.2017.09.085
Publisher site
See Article on Publisher Site

Abstract

1,2,3-Trichloropropane (TCP) is a groundwater contaminant in the drinking water aquifers in Hawaii and some other states. Granular activated carbon (GAC) has been used for 30 years to treat approximately 60 million gallons per day of TCP-contaminated groundwater in Hawaii. The State of Hawaii's current maximum contaminant level (MCL) for TCP is 600 ng/L (ppt), and consideration is being given to lower the MCL to 5 ppt. There is no EPA MCL for TCP. A study was conducted to determine if any GAC could meet a 5 ppt MCL for TCP, and if so, how many bedvolumes (BVs) could be treated prior to breakthrough. Constant Diffusivity-Rapid Small-Scale Column Tests (CD-RSSCTs) were performed to evaluate GAC adsorption of TCP. Three different groundwaters and six different GACs were utilized. The RSSCTs with the currently-utilized GAC were predictive of the performance of the GAC contactors (50,000 BVs to breakthrough). Any of the six GACs could meet a MCL of 5 ppt and some could do so for 150,000 or more BVs. No single GAC was optimal for all three well sites, indicating effects of subtle undefined differences in the water matrix and/or GAC physiochemical properties. The coal-based direct-activated carbon currently being used is the least optimal for all three well sites with respect to meeting a potential new TCP MCL of 5 ppt. The most effective GACs for Kunia were the Calgon coal-based GAC and the Siemens enhanced coconut shell GAC, while the most effective for Waipahu were the Siemens regular and enhanced coconut shell GACs, and the most effective for Mililani was the Calgon coal-based GAC. Choosing just one GAC for use at all three well sites (rather than the optimal for each site) would result in a reduction of treatment run time of 1 year at one well site (63% reduction).

Journal

Environmental PollutionElsevier

Published: Feb 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off