Adhesion performance and film formation of acrylic emulsion coating on medium density fiberboard treated with Ar plasma

Adhesion performance and film formation of acrylic emulsion coating on medium density fiberboard... This work investigates the adhesion properties of medium density fiberboard (MDF) panel surfaces treated by an argon plasma at two power levels (50 and 150W) and four glow discharge times (10, 40, 60 and 120s) and then coated with an acrylic emulsion. Wettability parameters and film formation kinetics were investigated by water apparent contact angle and diffusing wave spectroscopy, respectively. Pull-off strength was used to determine coating/wood adhesion. The aging effect of 300-days in storage at ambient conditions was examined by apparent contact angle measurements. The wettability of the MDF surface was enhanced significantly - especially at the 150W power level – that improves coating/wood adhesion. A film formation process occurred in shorter time for plasma treated samples due to the faster motion of particles. MDF panels partially recovered their natural hydrophobicity in the first ten days of storage. Nevertheless, higher levels of power and time of glow discharge were able to slow down the aging effects. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Adhesion and Adhesives Elsevier

Loading next page...
 
/lp/elsevier/adhesion-performance-and-film-formation-of-acrylic-emulsion-coating-on-aeRINZtpC6
Publisher
Elsevier
Copyright
Copyright © 2016 Elsevier Ltd
ISSN
0143-7496
D.O.I.
10.1016/j.ijadhadh.2016.08.002
Publisher site
See Article on Publisher Site

Abstract

This work investigates the adhesion properties of medium density fiberboard (MDF) panel surfaces treated by an argon plasma at two power levels (50 and 150W) and four glow discharge times (10, 40, 60 and 120s) and then coated with an acrylic emulsion. Wettability parameters and film formation kinetics were investigated by water apparent contact angle and diffusing wave spectroscopy, respectively. Pull-off strength was used to determine coating/wood adhesion. The aging effect of 300-days in storage at ambient conditions was examined by apparent contact angle measurements. The wettability of the MDF surface was enhanced significantly - especially at the 150W power level – that improves coating/wood adhesion. A film formation process occurred in shorter time for plasma treated samples due to the faster motion of particles. MDF panels partially recovered their natural hydrophobicity in the first ten days of storage. Nevertheless, higher levels of power and time of glow discharge were able to slow down the aging effects.

Journal

International Journal of Adhesion and AdhesivesElsevier

Published: Oct 1, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off