Active vibration control of a flexible rod moving in water: Application to nuclear refueling machines

Active vibration control of a flexible rod moving in water: Application to nuclear refueling... This paper addresses a simultaneous control of the positions of the bridge and trolley and the vibrations of the load of a nuclear refueling machine (RM) that transports nuclear fuel rods to given locations in the nuclear reactor. Hamilton’s principle is used to develop the equations of motion of the RM. The lateral and transverse vibrations of the fuel rods during their transportation in water are analyzed. In deriving the control law, the nonlinear hydrodynamic forces acting on the rod are considered. Then, a boundary control scheme is developed, which suppresses the lateral and transverse vibrations simultaneously in the course of the transportation of the fuel rod to the desired locations. Furthermore, Lyapunov function-based stability analyses are performed to prove the uniform ultimate boundedness of the closed loop system as well as the simultaneous control of the positions of the bridge and trolley under the influence of nonlinear hydrodynamic forces. Finally, experimental and simulation results are provided to demonstrate the effectiveness of the proposed control scheme. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Automatica Elsevier

Active vibration control of a flexible rod moving in water: Application to nuclear refueling machines

Loading next page...
 
/lp/elsevier/active-vibration-control-of-a-flexible-rod-moving-in-water-application-TRy07w1G76
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0005-1098
D.O.I.
10.1016/j.automatica.2018.03.048
Publisher site
See Article on Publisher Site

Abstract

This paper addresses a simultaneous control of the positions of the bridge and trolley and the vibrations of the load of a nuclear refueling machine (RM) that transports nuclear fuel rods to given locations in the nuclear reactor. Hamilton’s principle is used to develop the equations of motion of the RM. The lateral and transverse vibrations of the fuel rods during their transportation in water are analyzed. In deriving the control law, the nonlinear hydrodynamic forces acting on the rod are considered. Then, a boundary control scheme is developed, which suppresses the lateral and transverse vibrations simultaneously in the course of the transportation of the fuel rod to the desired locations. Furthermore, Lyapunov function-based stability analyses are performed to prove the uniform ultimate boundedness of the closed loop system as well as the simultaneous control of the positions of the bridge and trolley under the influence of nonlinear hydrodynamic forces. Finally, experimental and simulation results are provided to demonstrate the effectiveness of the proposed control scheme.

Journal

AutomaticaElsevier

Published: Jul 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off