Acid-resistant calcium silicate-based composite implants with high-strength as load-bearing bone graft substitutes and fracture fixation devices

Acid-resistant calcium silicate-based composite implants with high-strength as load-bearing bone... To achieve the excellent mechanical properties of biodegradable materials used for cortical bone graft substitutes and fracture fixation devices remains a challenge. To this end, the biomimetic calcium silicate/gelatin/chitosan oligosaccharide composite implants were developed, with an aim of achieving high strength, controlled degradation, and superior osteogenic activity. The work focused on the effect of gelatin on mechanical properties of the composites under four different kinds of mechanical stresses including compression, tensile, bending, and impact. The evaluation of in vitro degradability and fatigue at two simulated body fluid (SBF) of pH 7.4 and 5.0 was also performed, in which the pH 5.0 condition simulated clinical conditions caused by bacterial induced local metabolic acidosis or tissue inflammation. In addition, human mesenchymal stem cells (hMSCs) were sued to examine osteogenic activity. Experimental results showed that the appropriate amount of gelatin positively contributed to failure enhancement in compressive and impact modes. The 10wt% gelatin-containing composite exhibits the maximum value of the compressive strength (166.1MPa), which is within the reported compressive strength for cortical bone. The stability of the bone implants was apparently affected by the in vitro fatigue, but not by the initial pH environments (7.4 or 5.0). The gelatin not only greatly enhanced the degradation of the composite when soaked in the dynamic SBF solution, but effectively promoted attachment, proliferation, differentiation, and formation of mineralization of hMSCs. The 10wt%-gelatin composite with high initial strength may be a potential implant candidate for cortical bone repair and fracture fixation applications. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the Mechanical Behavior of Biomedical Materials Elsevier

Acid-resistant calcium silicate-based composite implants with high-strength as load-bearing bone graft substitutes and fracture fixation devices

Loading next page...
 
/lp/elsevier/acid-resistant-calcium-silicate-based-composite-implants-with-high-GFhubVZ77O
Publisher
Elsevier
Copyright
Copyright © 2016 Elsevier Ltd
ISSN
1751-6161
eISSN
1878-0180
D.O.I.
10.1016/j.jmbbm.2016.05.019
Publisher site
See Article on Publisher Site

Abstract

To achieve the excellent mechanical properties of biodegradable materials used for cortical bone graft substitutes and fracture fixation devices remains a challenge. To this end, the biomimetic calcium silicate/gelatin/chitosan oligosaccharide composite implants were developed, with an aim of achieving high strength, controlled degradation, and superior osteogenic activity. The work focused on the effect of gelatin on mechanical properties of the composites under four different kinds of mechanical stresses including compression, tensile, bending, and impact. The evaluation of in vitro degradability and fatigue at two simulated body fluid (SBF) of pH 7.4 and 5.0 was also performed, in which the pH 5.0 condition simulated clinical conditions caused by bacterial induced local metabolic acidosis or tissue inflammation. In addition, human mesenchymal stem cells (hMSCs) were sued to examine osteogenic activity. Experimental results showed that the appropriate amount of gelatin positively contributed to failure enhancement in compressive and impact modes. The 10wt% gelatin-containing composite exhibits the maximum value of the compressive strength (166.1MPa), which is within the reported compressive strength for cortical bone. The stability of the bone implants was apparently affected by the in vitro fatigue, but not by the initial pH environments (7.4 or 5.0). The gelatin not only greatly enhanced the degradation of the composite when soaked in the dynamic SBF solution, but effectively promoted attachment, proliferation, differentiation, and formation of mineralization of hMSCs. The 10wt%-gelatin composite with high initial strength may be a potential implant candidate for cortical bone repair and fracture fixation applications.

Journal

Journal of the Mechanical Behavior of Biomedical MaterialsElsevier

Published: Sep 1, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off