ACEA (a highly selective cannabinoid CB1 receptor agonist) stimulates hippocampal neurogenesis in mice treated with antiepileptic drugs

ACEA (a highly selective cannabinoid CB1 receptor agonist) stimulates hippocampal neurogenesis in... Hippocampal neurogenesis plays a very important role in learning and memory functions. In a search for best neurological drugs that protect neuronal cells and stimulate neurogenesis with no side effects, cannabinoids proved to be a strong group of substances having many beneficial properties. The aim of this study was to evaluate the impact of ACEA (arachidonyl-2′-chloroethylamide—a highly selective cannabinoid CB1 receptor agonist) combined with a classical antiepileptic drug sodium valproate (VPA) on neural precursor cells׳ proliferation and differentiation in the mouse brain. All experiments were performed on adolescent CB57/BL male mice injected i.p. with VPA (10mg/kg), ACEA (10mg/kg) and PMSF (30mg/kg) (phenylmethylsulfonyl fluoride—a substance protecting ACEA against degradation by the fatty-acid amidohydrolase) for 10 days. Next an acute response of proliferating neural precursor cells to ACEA and VPA administration was evaluated with Ki-67 staining (Time point 1). Next, in order to determine whether acute changes translated into long-term alterations in neurogenesis, proliferating cells were labeled with 5-bromo-2deoxyuridine (BrdU) followed by confocal microscopy used to determine the percentage of BrdU-labeled cells that showed mature cell phenotypes (Time point 2). Results indicate that ACEA with PMSF significantly increase the total number of Ki-67-positive cells when compared to the control group. Moreover, ACEA in combination with VPA increased the number of Ki-67-positive cells, whereas VPA administered alone had no impact on proliferating cells׳ population. Accordingly, neurogenesis study results indicate that the combination of ACEA+PMSF administered alone and in combination with VPA considerably increases the total number of BrdU-positive cells in comparison to the control group while ACEA+PMSF alone and in combination with VPA increased total numbers of BrdU-positive cells, newly born neurons and astrocytes as compared to VPA group but not to the control group. VPA administered alone decreased the number of newly born neurons with no significant impact on neurogenesis. These data provide substantial evidence that VPA administered chronically slightly decreases the proliferation and differentiation of newly born cells while combination of VPA+ACEA significantly increases the level of newborn neurons in the dentate subgranular zone. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Brain Research Elsevier

ACEA (a highly selective cannabinoid CB1 receptor agonist) stimulates hippocampal neurogenesis in mice treated with antiepileptic drugs

Loading next page...
 
/lp/elsevier/acea-a-highly-selective-cannabinoid-cb1-receptor-agonist-stimulates-DJjyDHvejw
Publisher
Elsevier
Copyright
Copyright © 2015 Elsevier B.V.
ISSN
0006-8993
D.O.I.
10.1016/j.brainres.2015.07.028
Publisher site
See Article on Publisher Site

Abstract

Hippocampal neurogenesis plays a very important role in learning and memory functions. In a search for best neurological drugs that protect neuronal cells and stimulate neurogenesis with no side effects, cannabinoids proved to be a strong group of substances having many beneficial properties. The aim of this study was to evaluate the impact of ACEA (arachidonyl-2′-chloroethylamide—a highly selective cannabinoid CB1 receptor agonist) combined with a classical antiepileptic drug sodium valproate (VPA) on neural precursor cells׳ proliferation and differentiation in the mouse brain. All experiments were performed on adolescent CB57/BL male mice injected i.p. with VPA (10mg/kg), ACEA (10mg/kg) and PMSF (30mg/kg) (phenylmethylsulfonyl fluoride—a substance protecting ACEA against degradation by the fatty-acid amidohydrolase) for 10 days. Next an acute response of proliferating neural precursor cells to ACEA and VPA administration was evaluated with Ki-67 staining (Time point 1). Next, in order to determine whether acute changes translated into long-term alterations in neurogenesis, proliferating cells were labeled with 5-bromo-2deoxyuridine (BrdU) followed by confocal microscopy used to determine the percentage of BrdU-labeled cells that showed mature cell phenotypes (Time point 2). Results indicate that ACEA with PMSF significantly increase the total number of Ki-67-positive cells when compared to the control group. Moreover, ACEA in combination with VPA increased the number of Ki-67-positive cells, whereas VPA administered alone had no impact on proliferating cells׳ population. Accordingly, neurogenesis study results indicate that the combination of ACEA+PMSF administered alone and in combination with VPA considerably increases the total number of BrdU-positive cells in comparison to the control group while ACEA+PMSF alone and in combination with VPA increased total numbers of BrdU-positive cells, newly born neurons and astrocytes as compared to VPA group but not to the control group. VPA administered alone decreased the number of newly born neurons with no significant impact on neurogenesis. These data provide substantial evidence that VPA administered chronically slightly decreases the proliferation and differentiation of newly born cells while combination of VPA+ACEA significantly increases the level of newborn neurons in the dentate subgranular zone.

Journal

Brain ResearchElsevier

Published: Oct 22, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial