Accuracy of topographic index models at identifying ephemeral gully trajectories on agricultural fields

Accuracy of topographic index models at identifying ephemeral gully trajectories on agricultural... Topographic index (TI) models have been widely used to predict trajectories and initiation points of ephemeral gullies (EGs) in agricultural landscapes. Prediction of EGs strongly relies on the selected value of critical TI threshold, and the accuracy depends on topographic features, agricultural management, and datasets of observed EGs. This study statistically evaluated the predictions by TI models in two paired watersheds in Central Kansas that had different levels of structural disturbances due to implemented conservation practices. Four TI models with sole dependency on topographic factors of slope, contributing area, and planform curvature were used in this study. The observed EGs were obtained by field reconnaissance and through the process of hydrological reconditioning of digital elevation models (DEMs). The Kernel Density Estimation analysis was used to evaluate TI distribution within a 10-m buffer of the observed EG trajectories. The EG occurrence within catchments was analyzed using kappa statistics of the error matrix approach, while the lengths of predicted EGs were compared with the observed dataset using the Nash–Sutcliffe Efficiency (NSE) statistics. The TI frequency analysis produced bi-modal distribution of topographic indexes with the pixels within the EG trajectory having a higher peak. The graphs of kappa and NSE versus critical TI threshold showed similar profile for all four TI models and both watersheds with the maximum value representing the best comparison with the observed data. The Compound Topographic Index (CTI) model presented the overall best accuracy with NSE of 0.55 and kappa of 0.32. The statistics for the disturbed watershed showed higher best critical TI threshold values than for the undisturbed watershed. Structural conservation practices implemented in the disturbed watershed reduced ephemeral channels in headwater catchments, thus producing less variability in catchments with EGs. The variation in critical thresholds for all TI models suggested that TI models tend to predict EG occurrence and length over a range of thresholds rather than find a single best value. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Geomorphology Elsevier

Accuracy of topographic index models at identifying ephemeral gully trajectories on agricultural fields

Loading next page...
 
/lp/elsevier/accuracy-of-topographic-index-models-at-identifying-ephemeral-gully-XjFDxt0lY8
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
0169-555X
eISSN
1872-695X
D.O.I.
10.1016/j.geomorph.2018.01.026
Publisher site
See Article on Publisher Site

Abstract

Topographic index (TI) models have been widely used to predict trajectories and initiation points of ephemeral gullies (EGs) in agricultural landscapes. Prediction of EGs strongly relies on the selected value of critical TI threshold, and the accuracy depends on topographic features, agricultural management, and datasets of observed EGs. This study statistically evaluated the predictions by TI models in two paired watersheds in Central Kansas that had different levels of structural disturbances due to implemented conservation practices. Four TI models with sole dependency on topographic factors of slope, contributing area, and planform curvature were used in this study. The observed EGs were obtained by field reconnaissance and through the process of hydrological reconditioning of digital elevation models (DEMs). The Kernel Density Estimation analysis was used to evaluate TI distribution within a 10-m buffer of the observed EG trajectories. The EG occurrence within catchments was analyzed using kappa statistics of the error matrix approach, while the lengths of predicted EGs were compared with the observed dataset using the Nash–Sutcliffe Efficiency (NSE) statistics. The TI frequency analysis produced bi-modal distribution of topographic indexes with the pixels within the EG trajectory having a higher peak. The graphs of kappa and NSE versus critical TI threshold showed similar profile for all four TI models and both watersheds with the maximum value representing the best comparison with the observed data. The Compound Topographic Index (CTI) model presented the overall best accuracy with NSE of 0.55 and kappa of 0.32. The statistics for the disturbed watershed showed higher best critical TI threshold values than for the undisturbed watershed. Structural conservation practices implemented in the disturbed watershed reduced ephemeral channels in headwater catchments, thus producing less variability in catchments with EGs. The variation in critical thresholds for all TI models suggested that TI models tend to predict EG occurrence and length over a range of thresholds rather than find a single best value.

Journal

GeomorphologyElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off