Accuracy of MRI-based finite element assessment of distal tibia compared to mechanical testing

Accuracy of MRI-based finite element assessment of distal tibia compared to mechanical testing High-resolution MRI-derived finite element analysis (FEA) has been used in translational research to estimate the mechanical competence of human bone. However, this method has yet to be validated adequately under in vivo imaging spatial resolution or signal-to-noise conditions. We therefore compared MRI-based metrics of bone strength to those obtained from direct, mechanical testing. The study was conducted on tibiae from 17 human donors (12 males and five females, aged 33 to 88years) with no medical history of conditions affecting bone mineral homeostasis. A 25mm segment from each distal tibia underwent MR imaging in a clinical 3-Tesla scanner using a fast large-angle spin-echo (FLASE) sequence at 0.137mm×0.137mm×0.410mm voxel size, in accordance with in vivo scanning protocol. The resulting high-resolution MR images were processed and used to generate bone volume fraction maps, which served as input for the micro-level FEA model. Simulated compression was applied to compute stiffness, yield strength, ultimate strength, modulus of resilience, and toughness, which were then compared to metrics obtained from mechanical testing. Moderate to strong positive correlations were found between computationally and experimentally derived values of stiffness (R2=0.77, p<0.0001), yield strength (R2=0.38, p=0.0082), ultimate strength (R2=0.40, p=0.0067), and resilience (R2=0.46, p=0.0026), but only a weak, albeit significant, correlation was found for toughness (R2=0.26, p=0.036). Furthermore, experimentally derived yield strength and ultimate strength were moderately correlated with MRI-derived stiffness (R2=0.48, p=0.0022 and R2=0.58, p=0.0004, respectively). These results suggest that high-resolution MRI-based finite element (FE) models are effective in assessing mechanical parameters of distal skeletal extremities. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bone Elsevier

Accuracy of MRI-based finite element assessment of distal tibia compared to mechanical testing

Loading next page...
 
/lp/elsevier/accuracy-of-mri-based-finite-element-assessment-of-distal-tibia-xzblSMYbd7
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Inc.
ISSN
8756-3282
D.O.I.
10.1016/j.bone.2017.12.023
Publisher site
See Article on Publisher Site

Abstract

High-resolution MRI-derived finite element analysis (FEA) has been used in translational research to estimate the mechanical competence of human bone. However, this method has yet to be validated adequately under in vivo imaging spatial resolution or signal-to-noise conditions. We therefore compared MRI-based metrics of bone strength to those obtained from direct, mechanical testing. The study was conducted on tibiae from 17 human donors (12 males and five females, aged 33 to 88years) with no medical history of conditions affecting bone mineral homeostasis. A 25mm segment from each distal tibia underwent MR imaging in a clinical 3-Tesla scanner using a fast large-angle spin-echo (FLASE) sequence at 0.137mm×0.137mm×0.410mm voxel size, in accordance with in vivo scanning protocol. The resulting high-resolution MR images were processed and used to generate bone volume fraction maps, which served as input for the micro-level FEA model. Simulated compression was applied to compute stiffness, yield strength, ultimate strength, modulus of resilience, and toughness, which were then compared to metrics obtained from mechanical testing. Moderate to strong positive correlations were found between computationally and experimentally derived values of stiffness (R2=0.77, p<0.0001), yield strength (R2=0.38, p=0.0082), ultimate strength (R2=0.40, p=0.0067), and resilience (R2=0.46, p=0.0026), but only a weak, albeit significant, correlation was found for toughness (R2=0.26, p=0.036). Furthermore, experimentally derived yield strength and ultimate strength were moderately correlated with MRI-derived stiffness (R2=0.48, p=0.0022 and R2=0.58, p=0.0004, respectively). These results suggest that high-resolution MRI-based finite element (FE) models are effective in assessing mechanical parameters of distal skeletal extremities.

Journal

BoneElsevier

Published: Mar 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off