Accounting for soil carbon changes in agricultural life cycle assessment (LCA): a review

Accounting for soil carbon changes in agricultural life cycle assessment (LCA): a review Soil carbon sequestration, a climate change mitigation option for agriculture, can either increase or decrease as a result of land management change (LMC) and land use change (LUC). To estimate all greenhouse gas (GHG) exchanges associated with various agricultural systems, life cycle assessments (LCAs) are frequently undertaken. To date LCA practitioners have not had a well-defined procedure to account for soil C in their assessments and as a consequence it is often not included. In this study, various methods used to estimate soil C changes due to (i) LMC and (ii) LUC are examined to assess soil C accounting methodologies in the life cycle inventory (LCI) of agricultural LCAs. A compromise between accuracy and completeness in LCA methods is necessary. A ranking of the preference of soil C accounting methods is suggested based on user expertise and data quality. For large scale assessment, the timing of soil CO2 emissions should be taken into account. If indirect LUC is relevant, a sensitivity analysis of assessment methods should be conducted because the methods highly affect assessment results. A common soil C accounting method that can be easily applied in agricultural LCA needs to be established and an agreement on indirect LUC methods will facilitate the assessment of LMC and LUC within agricultural LCAs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Cleaner Production Elsevier

Accounting for soil carbon changes in agricultural life cycle assessment (LCA): a review

Loading next page...
 
/lp/elsevier/accounting-for-soil-carbon-changes-in-agricultural-life-cycle-7fKGPeVfUr
Publisher
Elsevier
Copyright
Copyright © 2015 Elsevier Ltd
ISSN
0959-6526
D.O.I.
10.1016/j.jclepro.2015.05.040
Publisher site
See Article on Publisher Site

Abstract

Soil carbon sequestration, a climate change mitigation option for agriculture, can either increase or decrease as a result of land management change (LMC) and land use change (LUC). To estimate all greenhouse gas (GHG) exchanges associated with various agricultural systems, life cycle assessments (LCAs) are frequently undertaken. To date LCA practitioners have not had a well-defined procedure to account for soil C in their assessments and as a consequence it is often not included. In this study, various methods used to estimate soil C changes due to (i) LMC and (ii) LUC are examined to assess soil C accounting methodologies in the life cycle inventory (LCI) of agricultural LCAs. A compromise between accuracy and completeness in LCA methods is necessary. A ranking of the preference of soil C accounting methods is suggested based on user expertise and data quality. For large scale assessment, the timing of soil CO2 emissions should be taken into account. If indirect LUC is relevant, a sensitivity analysis of assessment methods should be conducted because the methods highly affect assessment results. A common soil C accounting method that can be easily applied in agricultural LCA needs to be established and an agreement on indirect LUC methods will facilitate the assessment of LMC and LUC within agricultural LCAs.

Journal

Journal of Cleaner ProductionElsevier

Published: Oct 1, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off