Abrasive wear behaviour of hard powders filled glass fabric–epoxy hybrid composites

Abrasive wear behaviour of hard powders filled glass fabric–epoxy hybrid composites The effect of incorporation of tungsten carbide (WC) and tantalum niobium carbide (Ta/NbC) powders on three-body abrasive wear behaviour in glass fabric–epoxy (G–E) composites was investigated and findings are analysed. A vacuum assisted resin transfer moulding (VARTM) technique was employed to obtain a series of G–E composites containing different fillers (WC and WC + Ta/NbC). Dry sand rubber wheel abrasion test was carried out at 200 rpm speed. The effect of different loads (22 and 32 N) and abrading distances (from 135 to 540 m) on the performance of the wear resistance were measured. The wear volume loss of the composites was found increasing with the increase in abrading distances and under the same conditions the specific wear rate decreases. The hard powders filled G–E composite systems exhibit lower wear volume loss and lower specific wear rate as compared to unfilled G–E composite system. The features of worn surfaces of the specimen were evaluated at higher and lower abrading distances at load of 32 N were using scanning electron microscope (SEM) and results indicate more severe damage to matrix and glass fiber in unfilled composite system as compared to hard powder filled composites. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png materials & design Elsevier

Abrasive wear behaviour of hard powders filled glass fabric–epoxy hybrid composites

Loading next page...
 
/lp/elsevier/abrasive-wear-behaviour-of-hard-powders-filled-glass-fabric-epoxy-R4KVBz8ZRB
Publisher
Elsevier
Copyright
Copyright © 2010 Elsevier Ltd
ISSN
0261-3069
eISSN
0141-5530
D.O.I.
10.1016/j.matdes.2010.08.050
Publisher site
See Article on Publisher Site

Abstract

The effect of incorporation of tungsten carbide (WC) and tantalum niobium carbide (Ta/NbC) powders on three-body abrasive wear behaviour in glass fabric–epoxy (G–E) composites was investigated and findings are analysed. A vacuum assisted resin transfer moulding (VARTM) technique was employed to obtain a series of G–E composites containing different fillers (WC and WC + Ta/NbC). Dry sand rubber wheel abrasion test was carried out at 200 rpm speed. The effect of different loads (22 and 32 N) and abrading distances (from 135 to 540 m) on the performance of the wear resistance were measured. The wear volume loss of the composites was found increasing with the increase in abrading distances and under the same conditions the specific wear rate decreases. The hard powders filled G–E composite systems exhibit lower wear volume loss and lower specific wear rate as compared to unfilled G–E composite system. The features of worn surfaces of the specimen were evaluated at higher and lower abrading distances at load of 32 N were using scanning electron microscope (SEM) and results indicate more severe damage to matrix and glass fiber in unfilled composite system as compared to hard powder filled composites.

Journal

materials & designElsevier

Published: Mar 1, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off