A zonal model for assessing street canyon air temperature of high-density cities

A zonal model for assessing street canyon air temperature of high-density cities The microclimate of a high-density city affects building energy consumption and thermal comfort. Despite the practical needs in building design and urban planning to predict conditions inside street canyons, literature is sparse for physics-based models that can support early stage design. Existing tools such as the Computational Fluid Dynamics (CFD) method is computationally expensive and cannot easily be coupled with other simulation models to account for solar heat gains at urban surfaces and anthropogenic heat from traffic and building HVAC systems. This paper describes a zonal model developed to assess airflow and air temperature in street canyons in high-density cities. The model takes into account 3D urban geometries, external wind, buoyancy, convective heat transfers from urban surfaces; it can simulate zonal air temperature, pressure, and airflow patterns by interactively solving mass, pressure and energy balance equations. The model was evaluated using field measurement on a 'mock-up' site consisted of movable concrete bins mimicking buildings and street canyons in high-density cities. Experiments were conducted on 3 alternative street layouts of various height-to-width aspect ratios: moderate (H/W = 1), dense (H/W = 2), and high-density (H/W = 3). Agreements between predicted and measured air temperatures were satisfactory across 3 layouts (RMSE < 0.0041). Temperature differences between simulated and measured results were largely within 1 K. The model can provide a reliable and quick assessment of the impact of street canyons on urban heat island (UHI) in high-density cities. The next step is to couple this model with building energy models. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Building and Environment Elsevier

A zonal model for assessing street canyon air temperature of high-density cities

Loading next page...
 
/lp/elsevier/a-zonal-model-for-assessing-street-canyon-air-temperature-of-high-0Ro4L7ZJF9
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0360-1323
D.O.I.
10.1016/j.buildenv.2018.01.035
Publisher site
See Article on Publisher Site

Abstract

The microclimate of a high-density city affects building energy consumption and thermal comfort. Despite the practical needs in building design and urban planning to predict conditions inside street canyons, literature is sparse for physics-based models that can support early stage design. Existing tools such as the Computational Fluid Dynamics (CFD) method is computationally expensive and cannot easily be coupled with other simulation models to account for solar heat gains at urban surfaces and anthropogenic heat from traffic and building HVAC systems. This paper describes a zonal model developed to assess airflow and air temperature in street canyons in high-density cities. The model takes into account 3D urban geometries, external wind, buoyancy, convective heat transfers from urban surfaces; it can simulate zonal air temperature, pressure, and airflow patterns by interactively solving mass, pressure and energy balance equations. The model was evaluated using field measurement on a 'mock-up' site consisted of movable concrete bins mimicking buildings and street canyons in high-density cities. Experiments were conducted on 3 alternative street layouts of various height-to-width aspect ratios: moderate (H/W = 1), dense (H/W = 2), and high-density (H/W = 3). Agreements between predicted and measured air temperatures were satisfactory across 3 layouts (RMSE < 0.0041). Temperature differences between simulated and measured results were largely within 1 K. The model can provide a reliable and quick assessment of the impact of street canyons on urban heat island (UHI) in high-density cities. The next step is to couple this model with building energy models.

Journal

Building and EnvironmentElsevier

Published: Mar 15, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off