A widespread morphological antipredator mechanism reduces the sensitivity to pesticides and increases the susceptibility to warming

A widespread morphological antipredator mechanism reduces the sensitivity to pesticides and... Pollution and predation are two omnipresent stressors in aquatic systems that can interact in multiple ways, thereby challenging accurate assessment of the effects of pollutants in natural systems. Despite the widespread occurrence of morphological antipredator mechanisms, no studies have tested how these can affect the sensitivity of prey to pesticides. Sensitivity to pesticides is typically measured via reductions in growth rates and survival, but also reductions in heat tolerance are to be expected and are becoming increasingly important in a warming world. We investigated how autotomy, a widespread morphological antipredator mechanism where animals sacrifice a body part (here the caudal lamellae) to escape when attacked by a predator, modified the sensitivity to the insecticide chlorpyrifos in larvae of the damselfly Coenagrion puella. Exposure to chlorpyrifos reduced the growth rate and heat tolerance (measured as CTmax). A key finding was that the pesticide had a greater impact on growth rates of intact animals, i.e. those that retained their lamellae. This reduced sensitivity to chlorpyrifos in animals without lamellae can be explained by the reduced outer surface area which is expected to result in a lower uptake of the pesticide. Larvae that underwent autotomy exhibited a lower heat tolerance, which may also be explained by the reduced surface area and the associated reduction in oxygen uptake. There is a wide diversity of morphological antipredator mechanisms, suggesting that there will be more examples where these mechanisms affect the vulnerability to pollutants. Given the importance of pollution and predation as structuring forces in aquatic food webs, exploring the potential interactions between morphological antipredator mechanisms and sensitivity to pollutants will be crucial for risk assessment of pollutants in aquatic systems. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Engineering Failure Analysis Elsevier

A widespread morphological antipredator mechanism reduces the sensitivity to pesticides and increases the susceptibility to warming

Loading next page...
 
/lp/elsevier/a-widespread-morphological-antipredator-mechanism-reduces-the-0tCTsJSn1f
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
1350-6307
eISSN
1873-1961
D.O.I.
10.1016/j.scitotenv.2018.01.179
Publisher site
See Article on Publisher Site

Abstract

Pollution and predation are two omnipresent stressors in aquatic systems that can interact in multiple ways, thereby challenging accurate assessment of the effects of pollutants in natural systems. Despite the widespread occurrence of morphological antipredator mechanisms, no studies have tested how these can affect the sensitivity of prey to pesticides. Sensitivity to pesticides is typically measured via reductions in growth rates and survival, but also reductions in heat tolerance are to be expected and are becoming increasingly important in a warming world. We investigated how autotomy, a widespread morphological antipredator mechanism where animals sacrifice a body part (here the caudal lamellae) to escape when attacked by a predator, modified the sensitivity to the insecticide chlorpyrifos in larvae of the damselfly Coenagrion puella. Exposure to chlorpyrifos reduced the growth rate and heat tolerance (measured as CTmax). A key finding was that the pesticide had a greater impact on growth rates of intact animals, i.e. those that retained their lamellae. This reduced sensitivity to chlorpyrifos in animals without lamellae can be explained by the reduced outer surface area which is expected to result in a lower uptake of the pesticide. Larvae that underwent autotomy exhibited a lower heat tolerance, which may also be explained by the reduced surface area and the associated reduction in oxygen uptake. There is a wide diversity of morphological antipredator mechanisms, suggesting that there will be more examples where these mechanisms affect the vulnerability to pollutants. Given the importance of pollution and predation as structuring forces in aquatic food webs, exploring the potential interactions between morphological antipredator mechanisms and sensitivity to pollutants will be crucial for risk assessment of pollutants in aquatic systems.

Journal

Engineering Failure AnalysisElsevier

Published: Sep 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off