A unified correlation for estimating HHV of solid, liquid and gaseous fuels

A unified correlation for estimating HHV of solid, liquid and gaseous fuels A unified correlation for computation of higher heating value (HHV) from elemental analysis of fuels is proposed in this paper. This correlation has been derived using 225 data points and validated for additional 50 data points. The entire spectrum of fuels ranging from gaseous, liquid, coals, biomass material, char to residue-derived fuels has been considered in derivation of present correlation. The validity of this correlation has been established for fuels having wide range of elemental composition, i.e. C — 0.00–92.25%, H — 0.43–25.15%, O — 0.00–50.00%, N — 0.00–5.60%, S — 0.00–94.08% and Ash — 0.00–71.4%. The correlation offers an average absolute error of 1.45% and bias error as 0.00% and thereby establishes its versatility. Complete details of few salient data points, the methodology used for derivation of the correlation and the base assumptions made for derivation are the important constituents of this work. A summary of published correlations along with their basis also forms an important component of present work. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Fuel Elsevier

A unified correlation for estimating HHV of solid, liquid and gaseous fuels

Fuel, Volume 81 (8) – May 1, 2002

Loading next page...
 
/lp/elsevier/a-unified-correlation-for-estimating-hhv-of-solid-liquid-and-gaseous-mdMc0ydW0l
Publisher
Elsevier
Copyright
Copyright © 2001 Elsevier Ltd
ISSN
0016-2361
D.O.I.
10.1016/S0016-2361(01)00131-4
Publisher site
See Article on Publisher Site

Abstract

A unified correlation for computation of higher heating value (HHV) from elemental analysis of fuels is proposed in this paper. This correlation has been derived using 225 data points and validated for additional 50 data points. The entire spectrum of fuels ranging from gaseous, liquid, coals, biomass material, char to residue-derived fuels has been considered in derivation of present correlation. The validity of this correlation has been established for fuels having wide range of elemental composition, i.e. C — 0.00–92.25%, H — 0.43–25.15%, O — 0.00–50.00%, N — 0.00–5.60%, S — 0.00–94.08% and Ash — 0.00–71.4%. The correlation offers an average absolute error of 1.45% and bias error as 0.00% and thereby establishes its versatility. Complete details of few salient data points, the methodology used for derivation of the correlation and the base assumptions made for derivation are the important constituents of this work. A summary of published correlations along with their basis also forms an important component of present work.

Journal

FuelElsevier

Published: May 1, 2002

References

  • Kohlenchemie
    Strache, H.; Lant, R.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off