A two-phase material approach to model steel fibre reinforced self-compacting concrete in panels

A two-phase material approach to model steel fibre reinforced self-compacting concrete in panels This work presents an experimental and numerical approach to ascertain the mechanical behaviour of steel fibre reinforced self-compacting concrete in laminar structures. Four-point flexural tests were performed on prismatic specimens extracted from a SFRSCC panel; the specimens’ behaviour was then modelled under the FEM framework. SFRSCC is assumed as a two-phase material, i.e. plain concrete and discrete steel fibres. The nonlinear material behaviour of the plain matrix was simulated using 3D smeared crack model, while the fibre reinforcement mechanisms were modelled using micro-mechanical behaviour laws determined from experimental fibre pull-out tests. The good performance of the developed numerical strategy was demonstrated. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Engineering Fracture Mechanics Elsevier

A two-phase material approach to model steel fibre reinforced self-compacting concrete in panels

Loading next page...
 
/lp/elsevier/a-two-phase-material-approach-to-model-steel-fibre-reinforced-self-ATVNVNZZd9
Publisher
Elsevier
Copyright
Copyright © 2016 Elsevier Ltd
ISSN
0013-7944
eISSN
1873-7315
D.O.I.
10.1016/j.engfracmech.2016.04.043
Publisher site
See Article on Publisher Site

Abstract

This work presents an experimental and numerical approach to ascertain the mechanical behaviour of steel fibre reinforced self-compacting concrete in laminar structures. Four-point flexural tests were performed on prismatic specimens extracted from a SFRSCC panel; the specimens’ behaviour was then modelled under the FEM framework. SFRSCC is assumed as a two-phase material, i.e. plain concrete and discrete steel fibres. The nonlinear material behaviour of the plain matrix was simulated using 3D smeared crack model, while the fibre reinforcement mechanisms were modelled using micro-mechanical behaviour laws determined from experimental fibre pull-out tests. The good performance of the developed numerical strategy was demonstrated.

Journal

Engineering Fracture MechanicsElsevier

Published: Aug 1, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial