A three-node triangular element fitted to numerical manifold method with continuous nodal stress for crack analysis

A three-node triangular element fitted to numerical manifold method with continuous nodal stress... A three-node triangular element fitted to the numerical manifold method with continuous nodal stress called Trig3-CNS (NMM) element for accurately modeling two-dimensional linear elastic fracture problems is presented. By adopting two cover systems, namely, the mathematical cover and physical cover, the numerical manifold method (NMM) could easily solve continuous and discontinuous problems in a unified way. In contrast to the three-node triangular element (Trig3), the Trig3-CNS element has higher order of approximations, much better accuracy and continuous nodal stress. Moreover, it is free from the “linear dependence” which otherwise cripples many of the partition of unity based methods with high order approximations. The purpose of the present work is to synergize the advantages of both the recently developed Trig3-CNS element and the NMM to precisely model two-dimensional linear elastic fracture problems. A number of numerical examples indicate the accuracy and robustness of the present Trig3-CNS (NMM) element. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Engineering Fracture Mechanics Elsevier

A three-node triangular element fitted to numerical manifold method with continuous nodal stress for crack analysis

Loading next page...
 
/lp/elsevier/a-three-node-triangular-element-fitted-to-numerical-manifold-method-9fVJZ0GwXN
Publisher
Elsevier
Copyright
Copyright © 2016 Elsevier Ltd
ISSN
0013-7944
eISSN
1873-7315
D.O.I.
10.1016/j.engfracmech.2016.05.007
Publisher site
See Article on Publisher Site

Abstract

A three-node triangular element fitted to the numerical manifold method with continuous nodal stress called Trig3-CNS (NMM) element for accurately modeling two-dimensional linear elastic fracture problems is presented. By adopting two cover systems, namely, the mathematical cover and physical cover, the numerical manifold method (NMM) could easily solve continuous and discontinuous problems in a unified way. In contrast to the three-node triangular element (Trig3), the Trig3-CNS element has higher order of approximations, much better accuracy and continuous nodal stress. Moreover, it is free from the “linear dependence” which otherwise cripples many of the partition of unity based methods with high order approximations. The purpose of the present work is to synergize the advantages of both the recently developed Trig3-CNS element and the NMM to precisely model two-dimensional linear elastic fracture problems. A number of numerical examples indicate the accuracy and robustness of the present Trig3-CNS (NMM) element.

Journal

Engineering Fracture MechanicsElsevier

Published: Aug 1, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off