A thermodynamic method for the construction of a cohesive law from a nonlocal damage model

A thermodynamic method for the construction of a cohesive law from a nonlocal damage model Several published papers deal with the possibility of replacing a damage finite element model by a combination of cohesive zones and finite elements. The focus of the paper is to show under which conditions this change of model can be done in an energy-wise manner. The objective is to build a cohesive model based on a known damage model, without making any assumption on the shape of the cohesive law. The method is characterized, on the one hand, by the use of a well-defined thermodynamic framework for the cohesive model and, on the other hand, by the idea that the main quantity which must be maintained through the change of model is the energy dissipated by the structure. An analysis of the stability criteria enables us to determine the domains of validity of the different models. Thus, we show that it is consistent to derive the cohesive law from a given nonlocal damage model because the occurrence of a discontinuity can be viewed as an alternative way to limit localization. The method is illustrated on one-dimensional examples and a numerical resolution method for the problem with a cohesive zone is presented. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Solids and Structures Elsevier

A thermodynamic method for the construction of a cohesive law from a nonlocal damage model

Loading next page...
 
/lp/elsevier/a-thermodynamic-method-for-the-construction-of-a-cohesive-law-from-a-xOCmcxB8Ln
Publisher
Elsevier
Copyright
Copyright © 2008 Elsevier Ltd
ISSN
0020-7683
eISSN
1879-2146
D.O.I.
10.1016/j.ijsolstr.2008.11.019
Publisher site
See Article on Publisher Site

Abstract

Several published papers deal with the possibility of replacing a damage finite element model by a combination of cohesive zones and finite elements. The focus of the paper is to show under which conditions this change of model can be done in an energy-wise manner. The objective is to build a cohesive model based on a known damage model, without making any assumption on the shape of the cohesive law. The method is characterized, on the one hand, by the use of a well-defined thermodynamic framework for the cohesive model and, on the other hand, by the idea that the main quantity which must be maintained through the change of model is the energy dissipated by the structure. An analysis of the stability criteria enables us to determine the domains of validity of the different models. Thus, we show that it is consistent to derive the cohesive law from a given nonlocal damage model because the occurrence of a discontinuity can be viewed as an alternative way to limit localization. The method is illustrated on one-dimensional examples and a numerical resolution method for the problem with a cohesive zone is presented.

Journal

International Journal of Solids and StructuresElsevier

Published: Mar 15, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off