A theoretical model for the time varying current in organic electrochemical transistors in a dynamic regime

A theoretical model for the time varying current in organic electrochemical transistors in a... The dynamic interaction between cations and doped conductive polymer is at the basis of the working principles of organic electrochemical transistor devices. In this letter, we describe a theoretical model for the transport of saline ions in an electrolyte under the influence of an external voltage in a dynamic regime. We show how this scheme can be used to derive the time varying response and current generated by a conductive PEDOT:PSS polymer based OECT device interacting with those ions. The simulated output of the system displays a very high sensitivity on the parameters of the process including charge, size and concentration of the ions, and the frequency of operation of the device. The proposed model can be used to analyze the activity of an OECT device to derive the physical characteristics of individual species in a solution. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Organic Electronics Elsevier

A theoretical model for the time varying current in organic electrochemical transistors in a dynamic regime

Loading next page...
 
/lp/elsevier/a-theoretical-model-for-the-time-varying-current-in-organic-3IRBcZJYv8
Publisher
Elsevier
Copyright
Copyright © 2016 Elsevier B.V.
ISSN
1566-1199
D.O.I.
10.1016/j.orgel.2016.05.001
Publisher site
See Article on Publisher Site

Abstract

The dynamic interaction between cations and doped conductive polymer is at the basis of the working principles of organic electrochemical transistor devices. In this letter, we describe a theoretical model for the transport of saline ions in an electrolyte under the influence of an external voltage in a dynamic regime. We show how this scheme can be used to derive the time varying response and current generated by a conductive PEDOT:PSS polymer based OECT device interacting with those ions. The simulated output of the system displays a very high sensitivity on the parameters of the process including charge, size and concentration of the ions, and the frequency of operation of the device. The proposed model can be used to analyze the activity of an OECT device to derive the physical characteristics of individual species in a solution.

Journal

Organic ElectronicsElsevier

Published: Aug 1, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off