A systematical investigation of non-fullerene solar cells based on diketopyrrolopyrrole polymers as electron donor

A systematical investigation of non-fullerene solar cells based on diketopyrrolopyrrole polymers... Diketopyrrolopyrrole (DPP)-based conjugated polymers have been successfully applied in high performance field-effect transistors and fullerene-based solar cells, but show limited application in non-fullerene solar cells. In this work, we use four DPP polymers as electron donor and a perylene bisimide dye as electron acceptor to construct non-fullerene solar cells. The donors and acceptor have complementary absorption spectra in visible and near-infrared region, resulting in broad photo-response from 300 nm to 1000 nm. The solar cells were found to provide relatively low power conversion efficiencies of 1.6–2.6%, which was mainly due to low photocurrent and fill factor. Further investigation reveals that the low performance is originated from the high charge recombination in photo-active layers. Our systematical studies will help better understand the non-fullerene solar cells based on DPP polymers and inspire new researches toward efficient non-fullerene solar cells with broad photo-response. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Organic Electronics Elsevier

A systematical investigation of non-fullerene solar cells based on diketopyrrolopyrrole polymers as electron donor

Loading next page...
 
/lp/elsevier/a-systematical-investigation-of-non-fullerene-solar-cells-based-on-KF7oCZrNW9
Publisher
Elsevier
Copyright
Copyright © 2016 Elsevier B.V.
ISSN
1566-1199
D.O.I.
10.1016/j.orgel.2016.05.011
Publisher site
See Article on Publisher Site

Abstract

Diketopyrrolopyrrole (DPP)-based conjugated polymers have been successfully applied in high performance field-effect transistors and fullerene-based solar cells, but show limited application in non-fullerene solar cells. In this work, we use four DPP polymers as electron donor and a perylene bisimide dye as electron acceptor to construct non-fullerene solar cells. The donors and acceptor have complementary absorption spectra in visible and near-infrared region, resulting in broad photo-response from 300 nm to 1000 nm. The solar cells were found to provide relatively low power conversion efficiencies of 1.6–2.6%, which was mainly due to low photocurrent and fill factor. Further investigation reveals that the low performance is originated from the high charge recombination in photo-active layers. Our systematical studies will help better understand the non-fullerene solar cells based on DPP polymers and inspire new researches toward efficient non-fullerene solar cells with broad photo-response.

Journal

Organic ElectronicsElsevier

Published: Aug 1, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off