A sustainable replacement for TiO2 in photocatalyst construction materials: Hydroxyapatite-based photocatalytic additives, made from the valorisation of food wastes of marine origin

A sustainable replacement for TiO2 in photocatalyst construction materials: Hydroxyapatite-based... The use of waste materials and by-products in building materials is of increasing importance to improve sustainability in construction, as is the incorporation of photocatalytic materials to both combat atmospheric pollution and protect the structures and façades. This work reports the innovative use of photocatalytic hydroxyapatite (HAp) based powders, derived from Atlantic codfish bone wastes, as an additive to natural hydraulic lime mortars. HAp is the main component of bone, and hence is non-toxic and biocompatible. This is the first time that such a calcium phosphate-based photocatalyst, or indeed any fish/marine derived wastes, have been added to building materials. A key factor is that this HAp-based photocatalyst contains only 1 wt% TiO2, the material usually used as a photocatalyst in construction materials. As we only add 1–5 wt% of our total HAp-based material to the mortar, this means our photocatalytic mortars only contain 0.01–0.05 wt% titania (100–500 ppm), two orders of magnitude less than the quantities of 2–10 wt% TiO2 which are usually needed. Our photocatalyst is made from a sustainable waste stream by simple solution and thermal processing, and thus with a much smaller impact on the environment. Specimens were made by either traditional intermixing techniques, or by a post-curing coating procedure. All showed gas-phase photocatalytic activity for abatement of NOx pollutants under solar light. With intermixing, NOx abatement of 6.3–8.3% was observed. However, for coated mortars, superior NOx conversion rates were achieved of 7.1% and 23.8%, with 1 and 5 wt% additions, respectively. These results show the potential of this naturally-derived photocatalyst for applications in the construction industry, leading to lower atmospheric pollution and the creation of more durable/lower maintenance building façades, and environmentally sustainable materials for the preservation of cultural heritage. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Cleaner Production Elsevier

A sustainable replacement for TiO2 in photocatalyst construction materials: Hydroxyapatite-based photocatalytic additives, made from the valorisation of food wastes of marine origin

Loading next page...
 
/lp/elsevier/a-sustainable-replacement-for-tio2-in-photocatalyst-construction-QjluxjD0s4
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0959-6526
D.O.I.
10.1016/j.jclepro.2018.05.030
Publisher site
See Article on Publisher Site

Abstract

The use of waste materials and by-products in building materials is of increasing importance to improve sustainability in construction, as is the incorporation of photocatalytic materials to both combat atmospheric pollution and protect the structures and façades. This work reports the innovative use of photocatalytic hydroxyapatite (HAp) based powders, derived from Atlantic codfish bone wastes, as an additive to natural hydraulic lime mortars. HAp is the main component of bone, and hence is non-toxic and biocompatible. This is the first time that such a calcium phosphate-based photocatalyst, or indeed any fish/marine derived wastes, have been added to building materials. A key factor is that this HAp-based photocatalyst contains only 1 wt% TiO2, the material usually used as a photocatalyst in construction materials. As we only add 1–5 wt% of our total HAp-based material to the mortar, this means our photocatalytic mortars only contain 0.01–0.05 wt% titania (100–500 ppm), two orders of magnitude less than the quantities of 2–10 wt% TiO2 which are usually needed. Our photocatalyst is made from a sustainable waste stream by simple solution and thermal processing, and thus with a much smaller impact on the environment. Specimens were made by either traditional intermixing techniques, or by a post-curing coating procedure. All showed gas-phase photocatalytic activity for abatement of NOx pollutants under solar light. With intermixing, NOx abatement of 6.3–8.3% was observed. However, for coated mortars, superior NOx conversion rates were achieved of 7.1% and 23.8%, with 1 and 5 wt% additions, respectively. These results show the potential of this naturally-derived photocatalyst for applications in the construction industry, leading to lower atmospheric pollution and the creation of more durable/lower maintenance building façades, and environmentally sustainable materials for the preservation of cultural heritage.

Journal

Journal of Cleaner ProductionElsevier

Published: Aug 20, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off