A study on wall-to-bed heat transfer in a conical fluidized bed combustor

A study on wall-to-bed heat transfer in a conical fluidized bed combustor In this study, the flow characteristics and wall-to-bed heat transfer in a conical fluidized bed combustor (FBC) of height 0.8 m and cone angle of 30° were analyzed numerically and the results were compared to experimental ones. A two fluid Eulerian–Eulerian model coupled with kinetic theory of granular flow (KTGF) was used to simulate both hydrodynamic characteristics and heat transfer in a conical FBC. Hydrodynamic characteristics such as sand volume fraction, bed expansion, and pressure drop between two points at the cone part as well as heat transfer coefficient were compared to experimental data obtained under various operating conditions such as different superficial gas velocities and granular temperature models. Both heat transfer coefficient and pressure drop increased with increasing gas velocity. Use of a phase property model for granular temperature with slip conditions at the wall resulted in no clear effect in case of heat transfer coefficient, whereas there was better agreement between the experimental and numerical results for bed pressure drop when a partial differential equation model was used. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Thermal Engineering Elsevier

A study on wall-to-bed heat transfer in a conical fluidized bed combustor

Loading next page...
 
/lp/elsevier/a-study-on-wall-to-bed-heat-transfer-in-a-conical-fluidized-bed-AI3de1Aq9Q
Publisher
Elsevier
Copyright
Copyright © 2016 Elsevier Ltd
ISSN
1359-4311
eISSN
1873-5606
D.O.I.
10.1016/j.applthermaleng.2016.01.054
Publisher site
See Article on Publisher Site

Abstract

In this study, the flow characteristics and wall-to-bed heat transfer in a conical fluidized bed combustor (FBC) of height 0.8 m and cone angle of 30° were analyzed numerically and the results were compared to experimental ones. A two fluid Eulerian–Eulerian model coupled with kinetic theory of granular flow (KTGF) was used to simulate both hydrodynamic characteristics and heat transfer in a conical FBC. Hydrodynamic characteristics such as sand volume fraction, bed expansion, and pressure drop between two points at the cone part as well as heat transfer coefficient were compared to experimental data obtained under various operating conditions such as different superficial gas velocities and granular temperature models. Both heat transfer coefficient and pressure drop increased with increasing gas velocity. Use of a phase property model for granular temperature with slip conditions at the wall resulted in no clear effect in case of heat transfer coefficient, whereas there was better agreement between the experimental and numerical results for bed pressure drop when a partial differential equation model was used.

Journal

Applied Thermal EngineeringElsevier

Published: Apr 25, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off