A simplified formulation of wire-plate corona discharge in air: Application to the ion wind simulation

A simplified formulation of wire-plate corona discharge in air: Application to the ion wind... The spatial distribution of charged particles (electrons, negative ions and positive ions) and electric field have been evaluated using a semi-analytical approach of the positive and negative corona discharge for a wire-to-plate electrode system. Thus, approximate formulas useful for the characterization and control of corona discharge devices are provided, which helps to significantly reduce computational costs. Based on the obtained results, the electro-hydrodynamic (EHD) force generated by the corona discharge has been determined, and it has been used in the Navier-Stokes equations to compute the spatial distribution of the gas velocity. As a result, the influence of the corona plasma region in the flow pattern, particularly in the vicinity of the corona electrode, has been brought to light, which helps to understand the different flow velocities observed in positive and negative coronas. Moreover, the influence of voltage, wire radius, and inter-electrode separation on the electric wind velocity has been investigated. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Electrostatics Elsevier

A simplified formulation of wire-plate corona discharge in air: Application to the ion wind simulation

Loading next page...
 
/lp/elsevier/a-simplified-formulation-of-wire-plate-corona-discharge-in-air-DA0ErFwRRd
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
0304-3886
eISSN
1873-5738
D.O.I.
10.1016/j.elstat.2018.02.001
Publisher site
See Article on Publisher Site

Abstract

The spatial distribution of charged particles (electrons, negative ions and positive ions) and electric field have been evaluated using a semi-analytical approach of the positive and negative corona discharge for a wire-to-plate electrode system. Thus, approximate formulas useful for the characterization and control of corona discharge devices are provided, which helps to significantly reduce computational costs. Based on the obtained results, the electro-hydrodynamic (EHD) force generated by the corona discharge has been determined, and it has been used in the Navier-Stokes equations to compute the spatial distribution of the gas velocity. As a result, the influence of the corona plasma region in the flow pattern, particularly in the vicinity of the corona electrode, has been brought to light, which helps to understand the different flow velocities observed in positive and negative coronas. Moreover, the influence of voltage, wire radius, and inter-electrode separation on the electric wind velocity has been investigated.

Journal

Journal of ElectrostaticsElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial