A simplified formulation of wire-plate corona discharge in air: Application to the ion wind simulation

A simplified formulation of wire-plate corona discharge in air: Application to the ion wind... The spatial distribution of charged particles (electrons, negative ions and positive ions) and electric field have been evaluated using a semi-analytical approach of the positive and negative corona discharge for a wire-to-plate electrode system. Thus, approximate formulas useful for the characterization and control of corona discharge devices are provided, which helps to significantly reduce computational costs. Based on the obtained results, the electro-hydrodynamic (EHD) force generated by the corona discharge has been determined, and it has been used in the Navier-Stokes equations to compute the spatial distribution of the gas velocity. As a result, the influence of the corona plasma region in the flow pattern, particularly in the vicinity of the corona electrode, has been brought to light, which helps to understand the different flow velocities observed in positive and negative coronas. Moreover, the influence of voltage, wire radius, and inter-electrode separation on the electric wind velocity has been investigated. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Electrostatics Elsevier

A simplified formulation of wire-plate corona discharge in air: Application to the ion wind simulation

Loading next page...
 
/lp/elsevier/a-simplified-formulation-of-wire-plate-corona-discharge-in-air-DA0ErFwRRd
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
0304-3886
eISSN
1873-5738
D.O.I.
10.1016/j.elstat.2018.02.001
Publisher site
See Article on Publisher Site

Abstract

The spatial distribution of charged particles (electrons, negative ions and positive ions) and electric field have been evaluated using a semi-analytical approach of the positive and negative corona discharge for a wire-to-plate electrode system. Thus, approximate formulas useful for the characterization and control of corona discharge devices are provided, which helps to significantly reduce computational costs. Based on the obtained results, the electro-hydrodynamic (EHD) force generated by the corona discharge has been determined, and it has been used in the Navier-Stokes equations to compute the spatial distribution of the gas velocity. As a result, the influence of the corona plasma region in the flow pattern, particularly in the vicinity of the corona electrode, has been brought to light, which helps to understand the different flow velocities observed in positive and negative coronas. Moreover, the influence of voltage, wire radius, and inter-electrode separation on the electric wind velocity has been investigated.

Journal

Journal of ElectrostaticsElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off