A semi-analytical solution to compositional flow in liquid-rich gas plays

A semi-analytical solution to compositional flow in liquid-rich gas plays Liquid-rich gas (LRG) reservoirs can exhibit complex phase and flow behavior due to gas condensation and re-vaporization and differences in phase mobilities that results in compositional variations inside the system. To date, the analysis of composition variation in liquid-rich wells has been largely limited to numerical modeling. This work uses a similarity-based analytical approach to study the in situ and flowing fluid composition of gas condensate wells producing under infinite-acting linear and radial flow under constant bottomhole pressure (BHP) condition. We propose a semi-analytical solution to the governing partial differential equations (PDEs) written in terms a compositional fluid formulation for multiphase (gas, oil and water) flow system in liquid rich gas reservoirs. The proposed solution is developed using similarity-theory (i.e. Boltzmann’s transformation) and is validated by both analytical development and numerical simulation data. Using proposed method, pressure and overall composition are solved simultaneously and rigorously without any kind of simplification or approximation, from which producing fluid composition can be fully predicted prior to the availability of field production data. Moreover, results corroborate that when LRG wells are producing under 1D linear regime – a commonly-observed flow condition for hydraulically-fractured horizontal wells completed in unconventional formations – and against a constant BHP constraint, the producing wellbore fluid composition remains constant as long as the system remains infinite acting, leading to a constant producing gas-oil ratio (GOR). For radial flow, however, producing wells team composition and GOR are shown to be time-dependent before stabilization at a nearly-constant value. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Fuel Elsevier

A semi-analytical solution to compositional flow in liquid-rich gas plays

Loading next page...
 
/lp/elsevier/a-semi-analytical-solution-to-compositional-flow-in-liquid-rich-gas-DJQbeF5BlJ
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0016-2361
D.O.I.
10.1016/j.fuel.2017.08.097
Publisher site
See Article on Publisher Site

Abstract

Liquid-rich gas (LRG) reservoirs can exhibit complex phase and flow behavior due to gas condensation and re-vaporization and differences in phase mobilities that results in compositional variations inside the system. To date, the analysis of composition variation in liquid-rich wells has been largely limited to numerical modeling. This work uses a similarity-based analytical approach to study the in situ and flowing fluid composition of gas condensate wells producing under infinite-acting linear and radial flow under constant bottomhole pressure (BHP) condition. We propose a semi-analytical solution to the governing partial differential equations (PDEs) written in terms a compositional fluid formulation for multiphase (gas, oil and water) flow system in liquid rich gas reservoirs. The proposed solution is developed using similarity-theory (i.e. Boltzmann’s transformation) and is validated by both analytical development and numerical simulation data. Using proposed method, pressure and overall composition are solved simultaneously and rigorously without any kind of simplification or approximation, from which producing fluid composition can be fully predicted prior to the availability of field production data. Moreover, results corroborate that when LRG wells are producing under 1D linear regime – a commonly-observed flow condition for hydraulically-fractured horizontal wells completed in unconventional formations – and against a constant BHP constraint, the producing wellbore fluid composition remains constant as long as the system remains infinite acting, leading to a constant producing gas-oil ratio (GOR). For radial flow, however, producing wells team composition and GOR are shown to be time-dependent before stabilization at a nearly-constant value.

Journal

FuelElsevier

Published: Jan 15, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off