A review on the performance evaluation of natural draft dry cooling towers and possible improvements via inlet air spray cooling

A review on the performance evaluation of natural draft dry cooling towers and possible... Concentrating solar power (CSP) plants make use of the renewable and inexhaustible solar energy to produce electricity. Limited by the scarce water resources, CSP plants built in arid areas choose Natural Draft Dry Cooling Tower (NDDCT) to remove waste heat. However, NDDCT suffers from low efficiency in hot summer days. To resolve this problem, inlet air spray-cooling is introduced to improve the performance of NDDCT. In the first part of this paper, the research progress focused on both the theoretical and experimental studies on NDDCT are summarized. Then, in the second part, the spray cooling system consisting of various kinds of spray nozzles are described. Various nozzles produce different spray patterns such as flat-fan, hollow cone, full cone and solid jet. These spray patterns are characterized by flow rate, pressure, mean droplet size and droplet size distribution. Furthermore, the mathematical models correlating the cooling tower performance with the droplet evaporation process are used to predict the spray cooling performance and are summarized here. Finally, predictive results are presented to evaluate the performance of the pre-cooling system. The results illustrate that the inlet air pre-cooling would improve the efficiency of NDDCT and thus reduce power generation loss under high-ambient air temperature conditions. More research should be conducted to develop a practical NDDCT-based spray cooling system for industrial applications. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Renewable and Sustainable Energy Reviews Elsevier

A review on the performance evaluation of natural draft dry cooling towers and possible improvements via inlet air spray cooling

Loading next page...
 
/lp/elsevier/a-review-on-the-performance-evaluation-of-natural-draft-dry-cooling-OsDtCXKdIS
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
1364-0321
D.O.I.
10.1016/j.rser.2017.05.151
Publisher site
See Article on Publisher Site

Abstract

Concentrating solar power (CSP) plants make use of the renewable and inexhaustible solar energy to produce electricity. Limited by the scarce water resources, CSP plants built in arid areas choose Natural Draft Dry Cooling Tower (NDDCT) to remove waste heat. However, NDDCT suffers from low efficiency in hot summer days. To resolve this problem, inlet air spray-cooling is introduced to improve the performance of NDDCT. In the first part of this paper, the research progress focused on both the theoretical and experimental studies on NDDCT are summarized. Then, in the second part, the spray cooling system consisting of various kinds of spray nozzles are described. Various nozzles produce different spray patterns such as flat-fan, hollow cone, full cone and solid jet. These spray patterns are characterized by flow rate, pressure, mean droplet size and droplet size distribution. Furthermore, the mathematical models correlating the cooling tower performance with the droplet evaporation process are used to predict the spray cooling performance and are summarized here. Finally, predictive results are presented to evaluate the performance of the pre-cooling system. The results illustrate that the inlet air pre-cooling would improve the efficiency of NDDCT and thus reduce power generation loss under high-ambient air temperature conditions. More research should be conducted to develop a practical NDDCT-based spray cooling system for industrial applications.

Journal

Renewable and Sustainable Energy ReviewsElsevier

Published: Nov 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off