A review of thermal comfort models and indicators for indoor environments

A review of thermal comfort models and indicators for indoor environments This paper reviews the most used thermal comfort models and indicators with their variants, discussing their usage in control problems referring to energy management in indoor applications. The first part addresses the recent literature referring to the thermal comfort concepts, models of human thermal comfort, thermal comfort models and indicators, thermal comfort standards, control systems, optimisation methods, and practical assessments. Then, the ambient and personal parameters used to represent thermal comfort and thermal sensation are recalled. The following part reviews the definitions and usage of a number of thermal comfort indices, mainly related to the Predicted Mean Vote (PMV), the Actual Mean Vote (AMV), and the Predicted Percentage Dissatisfied (PPD), with their modifications and variants, indicating a number of applications to different situations in indoor environments. The last part reviews the thermal comfort models used to define control strategies in indoor applications, discussing the characteristics and parameters of models based on artificial neural networks, autoregressive variants, fuzzy control, and hybrid models combining different approaches. The characteristics of these models and their usage to predict the indoor air temperature and the PMV index are discussed with reference to the identification of the several inputs used in relevant literature contributions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Renewable and Sustainable Energy Reviews Elsevier

A review of thermal comfort models and indicators for indoor environments

Loading next page...
 
/lp/elsevier/a-review-of-thermal-comfort-models-and-indicators-for-indoor-EhyPDHa95k
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
1364-0321
D.O.I.
10.1016/j.rser.2017.05.175
Publisher site
See Article on Publisher Site

Abstract

This paper reviews the most used thermal comfort models and indicators with their variants, discussing their usage in control problems referring to energy management in indoor applications. The first part addresses the recent literature referring to the thermal comfort concepts, models of human thermal comfort, thermal comfort models and indicators, thermal comfort standards, control systems, optimisation methods, and practical assessments. Then, the ambient and personal parameters used to represent thermal comfort and thermal sensation are recalled. The following part reviews the definitions and usage of a number of thermal comfort indices, mainly related to the Predicted Mean Vote (PMV), the Actual Mean Vote (AMV), and the Predicted Percentage Dissatisfied (PPD), with their modifications and variants, indicating a number of applications to different situations in indoor environments. The last part reviews the thermal comfort models used to define control strategies in indoor applications, discussing the characteristics and parameters of models based on artificial neural networks, autoregressive variants, fuzzy control, and hybrid models combining different approaches. The characteristics of these models and their usage to predict the indoor air temperature and the PMV index are discussed with reference to the identification of the several inputs used in relevant literature contributions.

Journal

Renewable and Sustainable Energy ReviewsElsevier

Published: Nov 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off