A review of heat transfer in turbochargers

A review of heat transfer in turbochargers The conventional powertrain has seen a continuous wave of energy optimization, focusing heavily on boosting and engine downsizing. This trend is pushing OEMs to consider turbocharging as a premium solution for exhaust energy recovery. Turbocharger is an established, economically viable solution which recovers waste energy from the exhaust gasses, and in the process providing higher pressure and mass of air to the engine. However, a turbocharger has to be carefully matched to the engine. The process of matching a turbocharger to an engine is implemented in the early stages of design, through air system simulations. In these simulations, a turbocharger component is represented largely by performance maps and it serves as a boundary condition to the engine. The thermodynamic parameters of a turbocharger are calculated through the performance maps which are usually generated experimentally in gas test stands and used as look-up table in the engine models. Thus, the operational of the engine is dictated by the air flow thermodynamic parameters (pressure, temperature and mass flow) from the turbocharger compressor; this in turn will determine the thermodynamic parameters for the exhaust gas entering the turbocharger turbine. The importance and its sensitivity dictate that any heat transfer affecting the experiments to acquire the performance maps will cause errors in the characterization of a turbocharger. This will consequently lead to inaccurate predictions from the engine model if the heat transfer effects are not properly accounted for. The current paper provides a comprehensive review on how the industry and academics are addressing the heat transfer issue through advancing researches. The review begins by defining the main issues related with heat transfer in turbochargers and the state-of-the-art research looking into it. The paper also provides some inputs and recommendations on the research areas which should be further investigated in the years to come. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Renewable and Sustainable Energy Reviews Elsevier

Loading next page...
 
/lp/elsevier/a-review-of-heat-transfer-in-turbochargers-1acPHym10h
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
1364-0321
D.O.I.
10.1016/j.rser.2017.04.119
Publisher site
See Article on Publisher Site

Abstract

The conventional powertrain has seen a continuous wave of energy optimization, focusing heavily on boosting and engine downsizing. This trend is pushing OEMs to consider turbocharging as a premium solution for exhaust energy recovery. Turbocharger is an established, economically viable solution which recovers waste energy from the exhaust gasses, and in the process providing higher pressure and mass of air to the engine. However, a turbocharger has to be carefully matched to the engine. The process of matching a turbocharger to an engine is implemented in the early stages of design, through air system simulations. In these simulations, a turbocharger component is represented largely by performance maps and it serves as a boundary condition to the engine. The thermodynamic parameters of a turbocharger are calculated through the performance maps which are usually generated experimentally in gas test stands and used as look-up table in the engine models. Thus, the operational of the engine is dictated by the air flow thermodynamic parameters (pressure, temperature and mass flow) from the turbocharger compressor; this in turn will determine the thermodynamic parameters for the exhaust gas entering the turbocharger turbine. The importance and its sensitivity dictate that any heat transfer affecting the experiments to acquire the performance maps will cause errors in the characterization of a turbocharger. This will consequently lead to inaccurate predictions from the engine model if the heat transfer effects are not properly accounted for. The current paper provides a comprehensive review on how the industry and academics are addressing the heat transfer issue through advancing researches. The review begins by defining the main issues related with heat transfer in turbochargers and the state-of-the-art research looking into it. The paper also provides some inputs and recommendations on the research areas which should be further investigated in the years to come.

Journal

Renewable and Sustainable Energy ReviewsElsevier

Published: Nov 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off