A regional scale investigation on factors controlling the groundwater chemistry of various aquifers in a rapidly urbanized area: A case study of the Pearl River Delta

A regional scale investigation on factors controlling the groundwater chemistry of various... A growing population accompanied by urbanization has increased groundwater resource demands in the Pearl River Delta (PRD) area, southern China, and a comprehensive understanding of the groundwater chemistry in the PRD is necessary. The aims of this study were to investigate the groundwater chemistry in various aquifers in the PRD on a regional scale and to discuss the factors that control the groundwater chemistries of different types of aquifers. In addition, the effect of the expansion of construction land on the groundwater chemistry was also taken into consideration in this study. Nearly 400 groundwater samples were collected and fourteen chemical parameters were investigated. The results show that natural factors, such as seawater intrusions, are mainly responsible for the higher concentrations of total dissolved solids, Na+, Mg2+, K+, and Cl−, in granular aquifers than those in fissured and karst aquifers. Similarly, higher concentrations of NH4+, Fe and Mn in granular aquifers than those in the other two types of aquifers are mainly ascribed to natural reduction. In contrast, human activities, such as the continuous irrigation of river water, upon granular aquifer are mainly responsible for the higher concentrations of Ca2+ and HCO3− in granular aquifers than those in other two types of aquifers. Urbanization and industrialization are the main driving forces for the frequently occurrences of NO3 and SO4 water types, respectively. Moreover, the number of water types in the PRD increased to 89 after the decades of urbanization. Factors that control groundwater chemistries in various aquifers were extracted. A four-factor model controlled the groundwater chemistry of granular aquifers, while two three-factor models controlled the groundwater chemistries of fissured and karst aquifers, respectively. The results of this study show that the expansion of construction land is a powerful driving force for the change of groundwater chemistry in the PRD. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Science of the Total Environment Elsevier

A regional scale investigation on factors controlling the groundwater chemistry of various aquifers in a rapidly urbanized area: A case study of the Pearl River Delta

Loading next page...
 
/lp/elsevier/a-regional-scale-investigation-on-factors-controlling-the-groundwater-u4fK3hdGZ0
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier B.V.
ISSN
0048-9697
eISSN
1879-1026
D.O.I.
10.1016/j.scitotenv.2017.12.322
Publisher site
See Article on Publisher Site

Abstract

A growing population accompanied by urbanization has increased groundwater resource demands in the Pearl River Delta (PRD) area, southern China, and a comprehensive understanding of the groundwater chemistry in the PRD is necessary. The aims of this study were to investigate the groundwater chemistry in various aquifers in the PRD on a regional scale and to discuss the factors that control the groundwater chemistries of different types of aquifers. In addition, the effect of the expansion of construction land on the groundwater chemistry was also taken into consideration in this study. Nearly 400 groundwater samples were collected and fourteen chemical parameters were investigated. The results show that natural factors, such as seawater intrusions, are mainly responsible for the higher concentrations of total dissolved solids, Na+, Mg2+, K+, and Cl−, in granular aquifers than those in fissured and karst aquifers. Similarly, higher concentrations of NH4+, Fe and Mn in granular aquifers than those in the other two types of aquifers are mainly ascribed to natural reduction. In contrast, human activities, such as the continuous irrigation of river water, upon granular aquifer are mainly responsible for the higher concentrations of Ca2+ and HCO3− in granular aquifers than those in other two types of aquifers. Urbanization and industrialization are the main driving forces for the frequently occurrences of NO3 and SO4 water types, respectively. Moreover, the number of water types in the PRD increased to 89 after the decades of urbanization. Factors that control groundwater chemistries in various aquifers were extracted. A four-factor model controlled the groundwater chemistry of granular aquifers, while two three-factor models controlled the groundwater chemistries of fissured and karst aquifers, respectively. The results of this study show that the expansion of construction land is a powerful driving force for the change of groundwater chemistry in the PRD.

Journal

Science of the Total EnvironmentElsevier

Published: Jun 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off