A proactive scalable approach for reliable cluster formation in wireless networks with D2D offloading

A proactive scalable approach for reliable cluster formation in wireless networks with D2D... With the current exponential growth in traffic and service demands, device-to-device (D2D) cooperation is identified as a major mechanism to enable 5G networks to effectively and efficiently augment network resources. The effectiveness of D2D cooperation depends on a wide range of decision making processes that include cluster formation, resource allocation, in addition to connection and mobility management. Irrespective of the D2D cooperation scenario whether in sensor, ad hoc, or cellular networks, the literature normally assumes that devices selected as relays or data sources are reliable; this means that they will maintain the connection till the communication session ends. Yet, this assumption is challenged in practice since devices’ batteries can be depleted (e.g., sensors in an IoT network) and devices can move leading to connection termination (e.g., mobile users in a WiFi network or cars in a vehicular ad hoc network). To this end, we address the problem of reliable D2D cooperation in wireless networks by proposing a novel approach that is proactive by utilizing reliability metrics in the decision making process, and scalable by having low implementation complexity suitable for dense networks. These differentiating factors are shown to enhance the overall network reliability compared to standard techniques and to facilitate dynamic operation which is essential for practical implementation. Performance is evaluated using extensive simulations in addition to test bed experimental demonstration in order to quantify gains and extract insights on a range of existing design tradeoffs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ad Hoc Networks Elsevier

A proactive scalable approach for reliable cluster formation in wireless networks with D2D offloading

Loading next page...
 
/lp/elsevier/a-proactive-scalable-approach-for-reliable-cluster-formation-in-SW0BtBR0YE
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
1570-8705
D.O.I.
10.1016/j.adhoc.2018.04.010
Publisher site
See Article on Publisher Site

Abstract

With the current exponential growth in traffic and service demands, device-to-device (D2D) cooperation is identified as a major mechanism to enable 5G networks to effectively and efficiently augment network resources. The effectiveness of D2D cooperation depends on a wide range of decision making processes that include cluster formation, resource allocation, in addition to connection and mobility management. Irrespective of the D2D cooperation scenario whether in sensor, ad hoc, or cellular networks, the literature normally assumes that devices selected as relays or data sources are reliable; this means that they will maintain the connection till the communication session ends. Yet, this assumption is challenged in practice since devices’ batteries can be depleted (e.g., sensors in an IoT network) and devices can move leading to connection termination (e.g., mobile users in a WiFi network or cars in a vehicular ad hoc network). To this end, we address the problem of reliable D2D cooperation in wireless networks by proposing a novel approach that is proactive by utilizing reliability metrics in the decision making process, and scalable by having low implementation complexity suitable for dense networks. These differentiating factors are shown to enhance the overall network reliability compared to standard techniques and to facilitate dynamic operation which is essential for practical implementation. Performance is evaluated using extensive simulations in addition to test bed experimental demonstration in order to quantify gains and extract insights on a range of existing design tradeoffs.

Journal

Ad Hoc NetworksElsevier

Published: Aug 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off