A practical ontology query expansion algorithm for semantic-aware learning objects retrieval

A practical ontology query expansion algorithm for semantic-aware learning objects retrieval Following the rapid development of Internet, particularly web page interaction technology, distant e-learning has become increasingly realistic and popular. To solve the problems associated with sharing and reusing teaching materials in different e-learning systems, several standard formats, including SCORM, IMS, LOM, and AICC, etc., recently have been proposed by several different international organizations. SCORM LOM, namely learning object metadata, facilitates the indexing and searching of learning objects in a learning object repository through extended sharing and searching features. However, LOM suffers a weakness in terms of semantic-awareness capability. Most information retrieval systems assume that users have cognitive ability regarding their needs. However, in e-learning systems, users may have no idea of what they are looking for and the learning object metadata. This study presents an ontological approach for semantic-aware learning object retrieval. This approach has two significant novel features: a fully automatic ontology-based query expansion algorithm for inferring and aggregating user intention based on their original short query, and another “ambiguity removal” procedure for correcting inappropriate user query terms. This approach is sufficiently generic to be embedded to other LOM-based search mechanisms for semantic-aware learning object retrieval. Focused on digital learning material and contrasted to other traditional keyword-based search technologies, the proposed approach has experimentally demonstrated significantly improved retrieval precision and recall rate. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Computers & Education Elsevier

A practical ontology query expansion algorithm for semantic-aware learning objects retrieval

Loading next page...
 
/lp/elsevier/a-practical-ontology-query-expansion-algorithm-for-semantic-aware-zXhu0lnCBJ
Publisher
Elsevier
Copyright
Copyright © 2006 Elsevier Ltd
ISSN
0360-1315
eISSN
1873-782X
D.O.I.
10.1016/j.compedu.2006.12.007
Publisher site
See Article on Publisher Site

Abstract

Following the rapid development of Internet, particularly web page interaction technology, distant e-learning has become increasingly realistic and popular. To solve the problems associated with sharing and reusing teaching materials in different e-learning systems, several standard formats, including SCORM, IMS, LOM, and AICC, etc., recently have been proposed by several different international organizations. SCORM LOM, namely learning object metadata, facilitates the indexing and searching of learning objects in a learning object repository through extended sharing and searching features. However, LOM suffers a weakness in terms of semantic-awareness capability. Most information retrieval systems assume that users have cognitive ability regarding their needs. However, in e-learning systems, users may have no idea of what they are looking for and the learning object metadata. This study presents an ontological approach for semantic-aware learning object retrieval. This approach has two significant novel features: a fully automatic ontology-based query expansion algorithm for inferring and aggregating user intention based on their original short query, and another “ambiguity removal” procedure for correcting inappropriate user query terms. This approach is sufficiently generic to be embedded to other LOM-based search mechanisms for semantic-aware learning object retrieval. Focused on digital learning material and contrasted to other traditional keyword-based search technologies, the proposed approach has experimentally demonstrated significantly improved retrieval precision and recall rate.

Journal

Computers & EducationElsevier

Published: May 1, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off