A numerical model for design and optimization of surface textures for tilting pad thrust bearings

A numerical model for design and optimization of surface textures for tilting pad thrust bearings A numerical model based on the Reynolds equation to study textured tilting pad thrust bearings considering mass-conserving cavitation and thermal effects is presented. A non-uniform and adaptive finite volume method is utilized and two methods are compared and selected regarding their efficiency in handling discontinuities; specifically placing additional nodes closely around discontinuities and directly incorporating discontinuities in the discrete system. Multithreading is applied to improve the computational performance and three root-finding methods to evaluate the bearing equilibrium are compared; namely Newton-Raphson method, Broyden's method with Sherman-Morrison formula and a continuation approach with fourth-order Runge-Kutta method. Results from the equivalent untextured bearing are utilized to accelerate the computation of the textured bearing and results are validated by comparison with CFD data. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Tribology International Elsevier

A numerical model for design and optimization of surface textures for tilting pad thrust bearings

Loading next page...
 
/lp/elsevier/a-numerical-model-for-design-and-optimization-of-surface-textures-for-mZtx6EguO8
Publisher
Elsevier
Copyright
Copyright © 2017 The Author(s)
ISSN
0301-679X
eISSN
1879-2464
D.O.I.
10.1016/j.triboint.2017.10.024
Publisher site
See Article on Publisher Site

Abstract

A numerical model based on the Reynolds equation to study textured tilting pad thrust bearings considering mass-conserving cavitation and thermal effects is presented. A non-uniform and adaptive finite volume method is utilized and two methods are compared and selected regarding their efficiency in handling discontinuities; specifically placing additional nodes closely around discontinuities and directly incorporating discontinuities in the discrete system. Multithreading is applied to improve the computational performance and three root-finding methods to evaluate the bearing equilibrium are compared; namely Newton-Raphson method, Broyden's method with Sherman-Morrison formula and a continuation approach with fourth-order Runge-Kutta method. Results from the equivalent untextured bearing are utilized to accelerate the computation of the textured bearing and results are validated by comparison with CFD data.

Journal

Tribology InternationalElsevier

Published: Mar 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off