A novel signal sequence negative multimeric glycosomal protein required for cell cycle progression of Leishmania donovani parasites

A novel signal sequence negative multimeric glycosomal protein required for cell cycle... Expression of the intracellular form amastigote specific genes in the Leishmania donovani parasite plays a major role in parasite replication in the macrophage. In the current work, we have characterized a novel hypothetical gene, Ld30b that is specifically transcribed in the intracellular stage of the parasite. The recombinant Ld30b protein exists as a pentamer in solution as identified by native-PAGE and size exclusion gel chromatography. Structural analysis using circular dichroism and molecular modeling indicate that Ld30b belongs to family of cAMP-dependent protein kinase type I-alpha regulatory subunit. Co-localization immunofluorescence microscopy and western blot analyses (using anti-Ld30b antibody and anti-hypoxanthine-guanine phosphoribosyl transferase, a glycosome marker) on the isolated parasite glycosome organelle fractions show that Ld30b is localized in glycosome, though lacked a glycosome targeting PTS1/2 signal in the protein sequence. Episomal expression of Ld30b in the parasite caused the arrest of promastigotes and amastigotes growth in vitro. Cell cycle analysis using flow cytometry indicates that these parasites are arrested in ‘sub G0/G1’ phase of the cell cycle. Single allele knockout of Ld30b in the parasite similarly attenuated its growth by accumulation of cells in the S phase of cell cycle, thus confirming the probable importance of appropriate level of protein in the cells. Studying such intracellular stage expressing genes might unravel novel regulatory pathways for the development of drugs or vaccine candidates against leishmaniasis. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biochimica et Biophysica Acta (BBA) - Molecular Cell Research Elsevier

A novel signal sequence negative multimeric glycosomal protein required for cell cycle progression of Leishmania donovani parasites

Loading next page...
 
/lp/elsevier/a-novel-signal-sequence-negative-multimeric-glycosomal-protein-gcGYFvIYKd
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
0167-4889
D.O.I.
10.1016/j.bbamcr.2018.05.012
Publisher site
See Article on Publisher Site

Abstract

Expression of the intracellular form amastigote specific genes in the Leishmania donovani parasite plays a major role in parasite replication in the macrophage. In the current work, we have characterized a novel hypothetical gene, Ld30b that is specifically transcribed in the intracellular stage of the parasite. The recombinant Ld30b protein exists as a pentamer in solution as identified by native-PAGE and size exclusion gel chromatography. Structural analysis using circular dichroism and molecular modeling indicate that Ld30b belongs to family of cAMP-dependent protein kinase type I-alpha regulatory subunit. Co-localization immunofluorescence microscopy and western blot analyses (using anti-Ld30b antibody and anti-hypoxanthine-guanine phosphoribosyl transferase, a glycosome marker) on the isolated parasite glycosome organelle fractions show that Ld30b is localized in glycosome, though lacked a glycosome targeting PTS1/2 signal in the protein sequence. Episomal expression of Ld30b in the parasite caused the arrest of promastigotes and amastigotes growth in vitro. Cell cycle analysis using flow cytometry indicates that these parasites are arrested in ‘sub G0/G1’ phase of the cell cycle. Single allele knockout of Ld30b in the parasite similarly attenuated its growth by accumulation of cells in the S phase of cell cycle, thus confirming the probable importance of appropriate level of protein in the cells. Studying such intracellular stage expressing genes might unravel novel regulatory pathways for the development of drugs or vaccine candidates against leishmaniasis.

Journal

Biochimica et Biophysica Acta (BBA) - Molecular Cell ResearchElsevier

Published: Aug 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off