A novel quasi-3D trigonometric plate theory for free vibration analysis of advanced composite plates

A novel quasi-3D trigonometric plate theory for free vibration analysis of advanced composite plates This paper presents a new shear deformation theory including the stretching effect for free vibration of the simply supported functionally graded plates. The theory accounts for parabolic distribution of the transverse shear strains and satisfies the zero traction boundary conditions on the surfaces of the functionally graded plate without using shear correction factors. This theory has only five unknowns, which is even less than the other shear and normal deformation theories. The present one has a new displacement field which introduces undetermined integral variables. The equation of motion of the vibrated structure obtained via the classical Hamilton’s principle and solved using Navier’s steps. The validation of the proposed theoretical model is performed to demonstrate the efficacy of the model. It can be concluded that the present theory is not only accurate but also simple in predicting the natural frequencies of functionally graded plates with stretching effect. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Composite Structures Elsevier

A novel quasi-3D trigonometric plate theory for free vibration analysis of advanced composite plates

Loading next page...
 
/lp/elsevier/a-novel-quasi-3d-trigonometric-plate-theory-for-free-vibration-9WbIKVXeWj
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0263-8223
eISSN
1879-1085
D.O.I.
10.1016/j.compstruct.2017.10.047
Publisher site
See Article on Publisher Site

Abstract

This paper presents a new shear deformation theory including the stretching effect for free vibration of the simply supported functionally graded plates. The theory accounts for parabolic distribution of the transverse shear strains and satisfies the zero traction boundary conditions on the surfaces of the functionally graded plate without using shear correction factors. This theory has only five unknowns, which is even less than the other shear and normal deformation theories. The present one has a new displacement field which introduces undetermined integral variables. The equation of motion of the vibrated structure obtained via the classical Hamilton’s principle and solved using Navier’s steps. The validation of the proposed theoretical model is performed to demonstrate the efficacy of the model. It can be concluded that the present theory is not only accurate but also simple in predicting the natural frequencies of functionally graded plates with stretching effect.

Journal

Composite StructuresElsevier

Published: Jan 15, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off