A novel planning approach for the water, sanitation and hygiene (WaSH) sector: The use of object-oriented bayesian networks

A novel planning approach for the water, sanitation and hygiene (WaSH) sector: The use of... Conventional approaches to design and plan water, sanitation, and hygiene (WaSH) interventions are not suitable for capturing the increasing complexity of the context in which these services are delivered. Multidimensional tools are needed to unravel the links between access to basic services and the socio-economic drivers of poverty. This paper applies an object-oriented Bayesian network to reflect the main issues that determine access to WaSH services. A national Program in Kenya has been analyzed as initial case study. The main findings suggest that the proposed approach is able to accommodate local conditions and to represent an accurate reflection of the complexities of WaSH issues, incorporating the uncertainty intrinsic to service delivery processes. Results indicate those areas in which policy makers should prioritize efforts and resources. Similarly, the study shows the effects of sector interventions, as well as the foreseen impact of various scenarios related to the national Program. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Modelling & Software Elsevier

A novel planning approach for the water, sanitation and hygiene (WaSH) sector: The use of object-oriented bayesian networks

Loading next page...
 
/lp/elsevier/a-novel-planning-approach-for-the-water-sanitation-and-hygiene-wash-rg0iEAUkRg
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
1364-8152
eISSN
1873-6726
D.O.I.
10.1016/j.envsoft.2018.01.021
Publisher site
See Article on Publisher Site

Abstract

Conventional approaches to design and plan water, sanitation, and hygiene (WaSH) interventions are not suitable for capturing the increasing complexity of the context in which these services are delivered. Multidimensional tools are needed to unravel the links between access to basic services and the socio-economic drivers of poverty. This paper applies an object-oriented Bayesian network to reflect the main issues that determine access to WaSH services. A national Program in Kenya has been analyzed as initial case study. The main findings suggest that the proposed approach is able to accommodate local conditions and to represent an accurate reflection of the complexities of WaSH issues, incorporating the uncertainty intrinsic to service delivery processes. Results indicate those areas in which policy makers should prioritize efforts and resources. Similarly, the study shows the effects of sector interventions, as well as the foreseen impact of various scenarios related to the national Program.

Journal

Environmental Modelling & SoftwareElsevier

Published: May 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off