A novel oil–water separator design and its performance prediction

A novel oil–water separator design and its performance prediction Numerous oil wells, especially in their middle-late periods, are becoming less economic due to the high lifting costs and reduced recoveries. The downhole oil–water separation (DOWS) system is aimed to reduce the production cost, mitigate the environment impact, and enhance the oil recovery. However, current separators are of either poor separation effects or poor separation efficiencies.In this paper, a novel oil–water separator design is proposed based on the combination of two different flow resistance mechanisms and pipe serial-parallel theory, with the restrictive path restricting the heavier water, while the frictional path impeding the more viscous oil. Based on the combination of the flow pattern transformation criterion, homogenous model, two-fluid model, and pipe serial-parallel theory, a unified model of oil–water two-phase flow is developed to predict both the flow rate and water content distributions in different paths, which is then compared with the computational fluid dynamics (CFD) results. Unlike the CFD results, each path has a specific flow rate and water content, and as a consequence, specific flow regime and flow pattern.Both the CFD and model results show that the flow rate distributions in different paths of the separator will be adjusted automatically according to the fluid's property, while the model can also predict the water content distributions at the same time. And the average relative deviation between the CFD and model results for flow rate distribution is 14.24%, while that for water content distribution is 42.03%. Specifically, oil, being more viscous, mainly takes the restrictive path; while water, being heavier, tends to take the frictional path instead. To sum up, this autonomous function directs oil and water to different paths, hence oil and water is well separated. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Petroleum Science and Engineering Elsevier

A novel oil–water separator design and its performance prediction

Loading next page...
 
/lp/elsevier/a-novel-oil-water-separator-design-and-its-performance-prediction-mXC5AMtnAT
Publisher
Elsevier
Copyright
Copyright © 2016 Elsevier B.V.
ISSN
0920-4105
eISSN
1873-4715
D.O.I.
10.1016/j.petrol.2016.03.015
Publisher site
See Article on Publisher Site

Abstract

Numerous oil wells, especially in their middle-late periods, are becoming less economic due to the high lifting costs and reduced recoveries. The downhole oil–water separation (DOWS) system is aimed to reduce the production cost, mitigate the environment impact, and enhance the oil recovery. However, current separators are of either poor separation effects or poor separation efficiencies.In this paper, a novel oil–water separator design is proposed based on the combination of two different flow resistance mechanisms and pipe serial-parallel theory, with the restrictive path restricting the heavier water, while the frictional path impeding the more viscous oil. Based on the combination of the flow pattern transformation criterion, homogenous model, two-fluid model, and pipe serial-parallel theory, a unified model of oil–water two-phase flow is developed to predict both the flow rate and water content distributions in different paths, which is then compared with the computational fluid dynamics (CFD) results. Unlike the CFD results, each path has a specific flow rate and water content, and as a consequence, specific flow regime and flow pattern.Both the CFD and model results show that the flow rate distributions in different paths of the separator will be adjusted automatically according to the fluid's property, while the model can also predict the water content distributions at the same time. And the average relative deviation between the CFD and model results for flow rate distribution is 14.24%, while that for water content distribution is 42.03%. Specifically, oil, being more viscous, mainly takes the restrictive path; while water, being heavier, tends to take the frictional path instead. To sum up, this autonomous function directs oil and water to different paths, hence oil and water is well separated.

Journal

Journal of Petroleum Science and EngineeringElsevier

Published: Sep 1, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off