A note on “Hopf bifurcation analysis and ultimate bound estimation of a new 4-D quadratic autonomous hyper-chaotic system” in [Appl. Math. Comput. 291 (2016) 323–339] by Amin Zarei and Saeed Tavakoli

A note on “Hopf bifurcation analysis and ultimate bound estimation of a new 4-D quadratic... In the recent paper entitled “Hopf bifurcation analysis and ultimate bound estimation of a new 4-D quadratic autonomous hyper-chaotic system” in [Appl. Math. Comput. 291 (2016) 323–339] by Amin Zarei and Saeed Tavakoli, they proposed the following new four-dimensional (4-D) quadratic autonomous hyper-chaotic system: x1˙=a(x2−x1), x2˙=bx1−x2+ex4−x1x3, x3˙=−cx3+x1x2+x12, x4˙=−dx2, which generates double-wing chaotic and hyper-chaotic attractors with only one equilibrium point. Combining theoretical analysis and numerical simulations, they investigated some dynamical properties of that system like Lyapunov exponent spectrum, bifurcation diagram, phase portrait, Hopf bifurcation, etc. In particular, they formulated a conclusion that the system has the ellipsoidal ultimate bound by employing the method presented in the paper entitled “Ultimate bound estimation of a class of high dimensional quadratic autonomous dynamical systems” [Int. J. Bifurc. Chaos, 21(09) (2011), 2679–2694] by P. Wang et al. However, by means of detailed theoretical analysis, we show that both the conclusion itself and the derivation of its proof in [Appl. Math. Comput. 291 (2016) 323–339] are erroneous. Furthermore, we point out that the method adopted for studying the ultimate bound of that system is not applicable at all. Therefore, the ultimate bound estimation of that system needs further studying in future work. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Mathematics and Computation Elsevier

A note on “Hopf bifurcation analysis and ultimate bound estimation of a new 4-D quadratic autonomous hyper-chaotic system” in [Appl. Math. Comput. 291 (2016) 323–339] by Amin Zarei and Saeed Tavakoli

Loading next page...
 
/lp/elsevier/a-note-on-hopf-bifurcation-analysis-and-ultimate-bound-estimation-of-a-cXsxCDLzH5
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Inc.
ISSN
0096-3003
eISSN
1873-5649
D.O.I.
10.1016/j.amc.2018.01.027
Publisher site
See Article on Publisher Site

Abstract

In the recent paper entitled “Hopf bifurcation analysis and ultimate bound estimation of a new 4-D quadratic autonomous hyper-chaotic system” in [Appl. Math. Comput. 291 (2016) 323–339] by Amin Zarei and Saeed Tavakoli, they proposed the following new four-dimensional (4-D) quadratic autonomous hyper-chaotic system: x1˙=a(x2−x1), x2˙=bx1−x2+ex4−x1x3, x3˙=−cx3+x1x2+x12, x4˙=−dx2, which generates double-wing chaotic and hyper-chaotic attractors with only one equilibrium point. Combining theoretical analysis and numerical simulations, they investigated some dynamical properties of that system like Lyapunov exponent spectrum, bifurcation diagram, phase portrait, Hopf bifurcation, etc. In particular, they formulated a conclusion that the system has the ellipsoidal ultimate bound by employing the method presented in the paper entitled “Ultimate bound estimation of a class of high dimensional quadratic autonomous dynamical systems” [Int. J. Bifurc. Chaos, 21(09) (2011), 2679–2694] by P. Wang et al. However, by means of detailed theoretical analysis, we show that both the conclusion itself and the derivation of its proof in [Appl. Math. Comput. 291 (2016) 323–339] are erroneous. Furthermore, we point out that the method adopted for studying the ultimate bound of that system is not applicable at all. Therefore, the ultimate bound estimation of that system needs further studying in future work.

Journal

Applied Mathematics and ComputationElsevier

Published: Jul 15, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off