A new strategy to mitigate the initial capacity loss of lithium ion batteries

A new strategy to mitigate the initial capacity loss of lithium ion batteries Hard carbon (non-graphitizable) and related materials, like tin, tin oxide, silicon, and silicon oxide, have a high theoretical lithium delivery capacity (>550 mAh/g depending on their structural and chemical properties) but unfortunately they also exhibit a large initial capacity loss (ICL) that overrides the true reversible capacity in a full cell. Overcoming the large ICL of hard carbon in a full-cell lithium-ion battery (LIB) necessitates a new strategy wherein a sacrificial lithium source additive, such as, Li5FeO4 (LFO), is inserted on the cathode side. Full batteries using hard carbon coupled with LFO-LiCoO2 (LCO) are currently under development at our laboratory. We find that the reversible capacity of a cathode containing LFO can be increased by 14%. Furthermore, the cycle performance of full cells with LFO additive is improved from <90% to >95%. We show that the LFO additive not only can address the irreversible capacity loss of the anode, but can also provide the additional lithium ion source required to mitigate the lithium loss caused by side reactions. In addition, we have explored the possibility to achieve higher capacity with hard carbon, whereby the energy density of full cells can be increased from ca. 300 Wh/kg to >400 Wh/kg. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Power Sources Elsevier

A new strategy to mitigate the initial capacity loss of lithium ion batteries

Loading next page...
 
/lp/elsevier/a-new-strategy-to-mitigate-the-initial-capacity-loss-of-lithium-ion-S7o20aZaXR
Publisher
Elsevier
Copyright
Copyright © 2016 Elsevier B.V.
ISSN
0378-7753
D.O.I.
10.1016/j.jpowsour.2016.05.063
Publisher site
See Article on Publisher Site

Abstract

Hard carbon (non-graphitizable) and related materials, like tin, tin oxide, silicon, and silicon oxide, have a high theoretical lithium delivery capacity (>550 mAh/g depending on their structural and chemical properties) but unfortunately they also exhibit a large initial capacity loss (ICL) that overrides the true reversible capacity in a full cell. Overcoming the large ICL of hard carbon in a full-cell lithium-ion battery (LIB) necessitates a new strategy wherein a sacrificial lithium source additive, such as, Li5FeO4 (LFO), is inserted on the cathode side. Full batteries using hard carbon coupled with LFO-LiCoO2 (LCO) are currently under development at our laboratory. We find that the reversible capacity of a cathode containing LFO can be increased by 14%. Furthermore, the cycle performance of full cells with LFO additive is improved from <90% to >95%. We show that the LFO additive not only can address the irreversible capacity loss of the anode, but can also provide the additional lithium ion source required to mitigate the lithium loss caused by side reactions. In addition, we have explored the possibility to achieve higher capacity with hard carbon, whereby the energy density of full cells can be increased from ca. 300 Wh/kg to >400 Wh/kg.

Journal

Journal of Power SourcesElsevier

Published: Aug 30, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off