A new recombinant cell-based bioluminescent assay for sensitive androgen-like compound detection

A new recombinant cell-based bioluminescent assay for sensitive androgen-like compound detection A public concern is continuously arising about the presence of natural and anthropogenic compounds which affect human health by modulating normal endocrine functions. These substances, defined as endocrine disrupting compounds (EDC) represent an heterogeneous class of molecules either steroidal or not, sharing the ability of interfering with the endocrine system via nuclear receptor signaling pathways. Therefore there is an urgent need for high throughput screening systems able to detect EDCs and evaluate their biological activity. However, little attention has been dedicated to the development of assays for androgen-like compounds. The present work describes the development and optimization of a new rapid and sensitive bioluminescent yeast-based bioassay for androgen-like compounds in a 96-well microplate format. The bioassay is based on recombinant Saccharomyces cerevisiae cells modified to express human androgen receptor (hAR) and containing the sequence androgen response element (ARE) which drives the expression of Photinus pyralis luciferase, used as reporter gene. A recombinant yeast strain constitutively expressing luciferase was used as external control to correct the light signal accordingly to cell viability and sample matrix aspecific effects. The bioassay responds to testosterone as reference androgen in a concentration-dependent manner from 0.05 to 1000 nM allowing an accurate and precise quantitative evaluation in aqueous environmental samples down to 10 −11 mol/L. Other known androgen-like compounds exhibit similar dose–response behavior, thus permitting the use of the bioassay for an overall detection of androgen-like effect in environmental samples. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biosensors and Bioelectronics Elsevier

A new recombinant cell-based bioluminescent assay for sensitive androgen-like compound detection

Loading next page...
 
/lp/elsevier/a-new-recombinant-cell-based-bioluminescent-assay-for-sensitive-5moyV7xJaf
Publisher
Elsevier
Copyright
Copyright © 2004 Elsevier B.V.
ISSN
0956-5663
D.O.I.
10.1016/j.bios.2004.10.018
Publisher site
See Article on Publisher Site

Abstract

A public concern is continuously arising about the presence of natural and anthropogenic compounds which affect human health by modulating normal endocrine functions. These substances, defined as endocrine disrupting compounds (EDC) represent an heterogeneous class of molecules either steroidal or not, sharing the ability of interfering with the endocrine system via nuclear receptor signaling pathways. Therefore there is an urgent need for high throughput screening systems able to detect EDCs and evaluate their biological activity. However, little attention has been dedicated to the development of assays for androgen-like compounds. The present work describes the development and optimization of a new rapid and sensitive bioluminescent yeast-based bioassay for androgen-like compounds in a 96-well microplate format. The bioassay is based on recombinant Saccharomyces cerevisiae cells modified to express human androgen receptor (hAR) and containing the sequence androgen response element (ARE) which drives the expression of Photinus pyralis luciferase, used as reporter gene. A recombinant yeast strain constitutively expressing luciferase was used as external control to correct the light signal accordingly to cell viability and sample matrix aspecific effects. The bioassay responds to testosterone as reference androgen in a concentration-dependent manner from 0.05 to 1000 nM allowing an accurate and precise quantitative evaluation in aqueous environmental samples down to 10 −11 mol/L. Other known androgen-like compounds exhibit similar dose–response behavior, thus permitting the use of the bioassay for an overall detection of androgen-like effect in environmental samples.

Journal

Biosensors and BioelectronicsElsevier

Published: May 15, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial