A new instrument for passive remote sensing: 2. Measurement of leaf and canopy reflectance changes at 531 nm and their relationship with photosynthesis and chlorophyll fluorescence

A new instrument for passive remote sensing: 2. Measurement of leaf and canopy reflectance... A previously described passive remote sensing fluorimeter (see companion paper) was modified to detect changes in the reflectance of vegetation. The utility of this remote sensing technique to measure the Physiological Reflectance Index (PRI) is shown at both leaf level under laboratory conditions and at the canopy level in the field. PRI, defined as the relative changes in reflectance at 531 nm with respect to those at 570 nm (PRI=R531−R570/R531+R570), is related to xanthophyll-related, dynamic changes of non-photochemical quenching of chlorophyll fluorescence. The robustness of this relationship by simultaneous remote sensing of PRI and chlorophyll fluorescence is strengthened. At the leaf level, the existence of two kinetically distinct components of PRI is shown. A fast (within seconds) component that is partly attributed to ΔpH induced chloroplast shrinkage, and a slow (within minutes), main component that is related to xanthophyll de-epoxidation, as demonstrated by its disappearance in the presence of DTT. Overall, PRI correlated better with non-photochemical quenching of chlorophyll fluorescence (NPQ) than with any other measured parameter, including the photochemical efficiency of PSII. Finally, at the canopy level and under field conditions, it is shown that PRI can be a useful tool for remote sensing of water stress in grapevines. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Remote Sensing of Environment Elsevier

A new instrument for passive remote sensing: 2. Measurement of leaf and canopy reflectance changes at 531 nm and their relationship with photosynthesis and chlorophyll fluorescence

Remote Sensing of Environment, Volume 91 (2) – May 30, 2004

Loading next page...
 
/lp/elsevier/a-new-instrument-for-passive-remote-sensing-2-measurement-of-leaf-and-LbbNz00PBR
Publisher
Elsevier
Copyright
Copyright © 2004 Elsevier Inc.
ISSN
0034-4257
DOI
10.1016/j.rse.2004.03.012
Publisher site
See Article on Publisher Site

Abstract

A previously described passive remote sensing fluorimeter (see companion paper) was modified to detect changes in the reflectance of vegetation. The utility of this remote sensing technique to measure the Physiological Reflectance Index (PRI) is shown at both leaf level under laboratory conditions and at the canopy level in the field. PRI, defined as the relative changes in reflectance at 531 nm with respect to those at 570 nm (PRI=R531−R570/R531+R570), is related to xanthophyll-related, dynamic changes of non-photochemical quenching of chlorophyll fluorescence. The robustness of this relationship by simultaneous remote sensing of PRI and chlorophyll fluorescence is strengthened. At the leaf level, the existence of two kinetically distinct components of PRI is shown. A fast (within seconds) component that is partly attributed to ΔpH induced chloroplast shrinkage, and a slow (within minutes), main component that is related to xanthophyll de-epoxidation, as demonstrated by its disappearance in the presence of DTT. Overall, PRI correlated better with non-photochemical quenching of chlorophyll fluorescence (NPQ) than with any other measured parameter, including the photochemical efficiency of PSII. Finally, at the canopy level and under field conditions, it is shown that PRI can be a useful tool for remote sensing of water stress in grapevines.

Journal

Remote Sensing of EnvironmentElsevier

Published: May 30, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off