A multi-year study of tillage and amendment effects on compacted soils

A multi-year study of tillage and amendment effects on compacted soils Constructing roads and buildings often involves removal of topsoil, grading, and traffic from heavy machinery. The result is exposed, compacted subsoil with low infiltration rate (IR), which hinders post-construction vegetation establishment and generates significant runoff, similar to impervious surfaces. Our goal was to assess tillage and adding amendments for improving density and maintaining perviousness of subsoils compacted during construction. The effects of tillage with and without amendments on (1) soil compaction, (2) IR, and (3) vegetative growth at five sites in North Carolina, USA were evaluated over a period of up to 32 months. The sites, representing a range of soil conditions, were located at three geographic regions; one in the Sandhills (located in Coastal Plain), one in the mountains, and three in the Piedmont. Amendments varied by site and included: (1) compost, (2) cross-linked polyacrylamide (xPAM), and (3) gypsum. Bulk density (BD) and soil penetration resistance (PR) tests were used to characterize soil physical condition. The IR was measured using a Cornell Sprinkle Infiltrometer. Vegetative growth was evaluated by measuring shoot mass and vegetative cover at all sites and root density at the Piedmont sites. Tillage decreased BD and PR compared to the compacted soil at four out of five sites for observations ranging from 24 to 32 months. Compost was applied to four sites prior to tillage and reduced BD in two of them compared to tillage alone. The IR in the tilled plots was maintained at about 3–10 times that of the compacted soil among the five sites over the monitoring periods. Adding amendments did not increase IR relative to tillage alone except at one Piedmont site, where compost and xPAM increased IR at 12 months and compost at 24 months after site establishment. Vegetative responses to tillage and amendments were inconsistent across sites. Results suggest that tillage is a viable option to reduce bulk density and increase infiltration for areas with compacted soils where vegetation is to be established, and that the effect is maintained for at least several years. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Environmental Management Elsevier

A multi-year study of tillage and amendment effects on compacted soils

Loading next page...
 
/lp/elsevier/a-multi-year-study-of-tillage-and-amendment-effects-on-compacted-soils-1DntV1Gdyf
Publisher
Elsevier
Copyright
Copyright © 2017 The Authors
ISSN
0301-4797
D.O.I.
10.1016/j.jenvman.2017.07.031
Publisher site
See Article on Publisher Site

Abstract

Constructing roads and buildings often involves removal of topsoil, grading, and traffic from heavy machinery. The result is exposed, compacted subsoil with low infiltration rate (IR), which hinders post-construction vegetation establishment and generates significant runoff, similar to impervious surfaces. Our goal was to assess tillage and adding amendments for improving density and maintaining perviousness of subsoils compacted during construction. The effects of tillage with and without amendments on (1) soil compaction, (2) IR, and (3) vegetative growth at five sites in North Carolina, USA were evaluated over a period of up to 32 months. The sites, representing a range of soil conditions, were located at three geographic regions; one in the Sandhills (located in Coastal Plain), one in the mountains, and three in the Piedmont. Amendments varied by site and included: (1) compost, (2) cross-linked polyacrylamide (xPAM), and (3) gypsum. Bulk density (BD) and soil penetration resistance (PR) tests were used to characterize soil physical condition. The IR was measured using a Cornell Sprinkle Infiltrometer. Vegetative growth was evaluated by measuring shoot mass and vegetative cover at all sites and root density at the Piedmont sites. Tillage decreased BD and PR compared to the compacted soil at four out of five sites for observations ranging from 24 to 32 months. Compost was applied to four sites prior to tillage and reduced BD in two of them compared to tillage alone. The IR in the tilled plots was maintained at about 3–10 times that of the compacted soil among the five sites over the monitoring periods. Adding amendments did not increase IR relative to tillage alone except at one Piedmont site, where compost and xPAM increased IR at 12 months and compost at 24 months after site establishment. Vegetative responses to tillage and amendments were inconsistent across sites. Results suggest that tillage is a viable option to reduce bulk density and increase infiltration for areas with compacted soils where vegetation is to be established, and that the effect is maintained for at least several years.

Journal

Journal of Environmental ManagementElsevier

Published: Dec 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off