A multi-period unit commitment problem under a new hybrid uncertainty set for a renewable energy source

A multi-period unit commitment problem under a new hybrid uncertainty set for a renewable energy... Recently, there is a growing use of renewable energy in the electricity markets due to governmental subsidy aiming to comply with reduced greenhouse gas emission targets. Jointly with its highly volatile generation it greatly affects the operation planning of power plants, particularly, when addressing the unit commitment problem (UCP).The UCP is imperative in electric power system operations. It seeks an operating policy for a system of generating units over a multi-period finite horizon to meet the demand, subject to equipment and physical constraints. We consider a profit based UCP (PUCP) of an energy producer operating in a deregulated market aiming to maximize its profit facing uncertainty in both market price and wind generation. Here, we employ the robust optimization (RO) methodology which provides a feasible solution for any realization of the uncertain parameters within a bounded set, resulting in a guaranteed value of the objective function. This leads to a model, which is a bilinear mixed integer problem.The method we develop in this paper results in a problem, which is notably as difficult to solve without uncertainty. Furthermore, its resulting policy is more successful in meeting the demand for electricity than that of currently used methods. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Renewable Energy Elsevier

A multi-period unit commitment problem under a new hybrid uncertainty set for a renewable energy source

Loading next page...
 
/lp/elsevier/a-multi-period-unit-commitment-problem-under-a-new-hybrid-uncertainty-dc9SKtbBYk
Publisher
Elsevier
Copyright
Copyright © 2016 Elsevier Ltd
ISSN
0960-1481
eISSN
1879-0682
D.O.I.
10.1016/j.renene.2016.05.095
Publisher site
See Article on Publisher Site

Abstract

Recently, there is a growing use of renewable energy in the electricity markets due to governmental subsidy aiming to comply with reduced greenhouse gas emission targets. Jointly with its highly volatile generation it greatly affects the operation planning of power plants, particularly, when addressing the unit commitment problem (UCP).The UCP is imperative in electric power system operations. It seeks an operating policy for a system of generating units over a multi-period finite horizon to meet the demand, subject to equipment and physical constraints. We consider a profit based UCP (PUCP) of an energy producer operating in a deregulated market aiming to maximize its profit facing uncertainty in both market price and wind generation. Here, we employ the robust optimization (RO) methodology which provides a feasible solution for any realization of the uncertain parameters within a bounded set, resulting in a guaranteed value of the objective function. This leads to a model, which is a bilinear mixed integer problem.The method we develop in this paper results in a problem, which is notably as difficult to solve without uncertainty. Furthermore, its resulting policy is more successful in meeting the demand for electricity than that of currently used methods.

Journal

Renewable EnergyElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off