A multi-period unit commitment problem under a new hybrid uncertainty set for a renewable energy source

A multi-period unit commitment problem under a new hybrid uncertainty set for a renewable energy... Recently, there is a growing use of renewable energy in the electricity markets due to governmental subsidy aiming to comply with reduced greenhouse gas emission targets. Jointly with its highly volatile generation it greatly affects the operation planning of power plants, particularly, when addressing the unit commitment problem (UCP).The UCP is imperative in electric power system operations. It seeks an operating policy for a system of generating units over a multi-period finite horizon to meet the demand, subject to equipment and physical constraints. We consider a profit based UCP (PUCP) of an energy producer operating in a deregulated market aiming to maximize its profit facing uncertainty in both market price and wind generation. Here, we employ the robust optimization (RO) methodology which provides a feasible solution for any realization of the uncertain parameters within a bounded set, resulting in a guaranteed value of the objective function. This leads to a model, which is a bilinear mixed integer problem.The method we develop in this paper results in a problem, which is notably as difficult to solve without uncertainty. Furthermore, its resulting policy is more successful in meeting the demand for electricity than that of currently used methods. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Renewable Energy Elsevier

A multi-period unit commitment problem under a new hybrid uncertainty set for a renewable energy source

Loading next page...
 
/lp/elsevier/a-multi-period-unit-commitment-problem-under-a-new-hybrid-uncertainty-dc9SKtbBYk
Publisher
Elsevier
Copyright
Copyright © 2016 Elsevier Ltd
ISSN
0960-1481
eISSN
1879-0682
D.O.I.
10.1016/j.renene.2016.05.095
Publisher site
See Article on Publisher Site

Abstract

Recently, there is a growing use of renewable energy in the electricity markets due to governmental subsidy aiming to comply with reduced greenhouse gas emission targets. Jointly with its highly volatile generation it greatly affects the operation planning of power plants, particularly, when addressing the unit commitment problem (UCP).The UCP is imperative in electric power system operations. It seeks an operating policy for a system of generating units over a multi-period finite horizon to meet the demand, subject to equipment and physical constraints. We consider a profit based UCP (PUCP) of an energy producer operating in a deregulated market aiming to maximize its profit facing uncertainty in both market price and wind generation. Here, we employ the robust optimization (RO) methodology which provides a feasible solution for any realization of the uncertain parameters within a bounded set, resulting in a guaranteed value of the objective function. This leads to a model, which is a bilinear mixed integer problem.The method we develop in this paper results in a problem, which is notably as difficult to solve without uncertainty. Furthermore, its resulting policy is more successful in meeting the demand for electricity than that of currently used methods.

Journal

Renewable EnergyElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off